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Abstract: This chapter describes gene expression analysis by Singular Value Decomposition 
(SVD), emphasizing initial characterization of the data. We describe SVD methods 
for visualization of gene expression data, representation of the data using a smaller 
number of variables, and detection of patterns in noisy gene expression data. In 
addition, we describe the precise relation between SVD analysis and Principal 
Component Analysis (PCA) when PCA is calculated using the covariance matrix, 
enabling our descriptions to apply equally well to either method. Our aim is to 
provide definitions, interpretations, examples, and references that will serve as 
resources for understanding and extending the application of SVD and PCA to gene 
expression analysis.  

1. INTRODUCTION 

One of the challenges of bioinformatics is to develop effective ways to analyze global gene 
expression data. A rigorous approach to gene expression analysis must involve an up-front 
characterization of the structure of the data. In addition to a broader utility in analysis methods, 
singular value decomposition (SVD) and principal component analysis (PCA) can be valuable 
tools in obtaining such a characterization.  SVD and PCA are common techniques for analysis of 
multivariate data, and gene expression data are well suited to analysis using SVD/PCA. A single 
microarray1 experiment can generate measurements for thousands, or even tens of thousands of 
genes. Present experiments typically consist of less than ten assays, but can consist of hundreds 
(Hughes et al., 2000). Gene expression data are currently rather noisy, and SVD can detect and 
extract small signals from noisy data.  

The goal of this chapter is to provide precise explanations of the use of SVD and PCA for 
gene expression analysis, illustrating methods using simple examples. We describe SVD methods 
for visualization of gene expression data, representation of the data using a smaller number of 
variables, and detection of patterns in noisy gene expression data. In addition, we describe the 
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mathematical relation between SVD analysis and Principal Component Analysis (PCA) when 
PCA is calculated using the covariance matrix, enabling our descriptions to apply equally well to 
either method. Our aims are 1) to provide descriptions and examples of the application of SVD 
methods and interpretation of their results; 2) to establish a foundation for understanding previous 
applications of SVD to gene expression analysis; and 3) to provide interpretations and references 
to related work that may inspire new advances.  

In section 1, the SVD is defined, with associations to other methods described. A summary of 
previous applications is presented in order to suggest directions for SVD analysis of gene 
expression data. In section 2 we discuss applications of SVD to gene expression analysis, 
including specific methods for SVD-based visualization of gene expression data, and use of SVD 
in detection of weak expression patterns. Some examples are given of previous applications of 
SVD to analysis of gene expression data. Our discussion in section 3 gives some general advice 
on the use of SVD analysis on gene expression data, and includes references to specific published 
SVD-based methods for gene expression analysis. Finally, in section 4, we provide information 
on some available resources and further reading.  

1.1 Mathematical definition of the SVD2  

Let X denote an m × n matrix of real-valued data and rank3 r, where without loss of generality 
m ≥ n, and therefore r ≤ n. In the case of microarray data, xij is the expression level of the ith gene 
in the jth assay. The elements of the ith row of X form the n-dimensional vector gi, which we refer 
to as the transcriptional response of the ith gene. Alternatively, the elements of the jth column of X 
form the m-dimensional vector aj, which we refer to as the expression profile of the jth assay.  

The equation for singular value decomposition of X is the following: 

TUSVX = , (5.1) 

where U is an m × n matrix, S is an  n × n diagonal matrix, and VT is also an n × n matrix. The 
columns of U are called the left singular vectors, {uk}, and form an orthonormal basis for the 
assay expression profiles, so that ui·uj = 1 for i = j, and ui·uj = 0 otherwise. The rows of VT 
contain the elements of the right singular vectors, {vk}, and form an orthonormal basis for the 
gene transcriptional responses. The elements of S are only nonzero on the diagonal, and are called 
the singular values. Thus, S = diag(s1,...,sn). Furthermore, sk > 0 for 1 ≤ k ≤ r, and si = 0 for 
(r+1) ≤ k ≤ n. By convention, the ordering of the singular vectors is determined by high-to-low 
sorting of singular values, with the highest singular value in the upper left index of the S matrix. 
Note that for a square, symmetric matrix X, singular value decomposition is equivalent to 
diagonalization, or solution of the eigenvalue problem.  
 One important result of the SVD of X is that 
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is the closest rank-l matrix to X. The term “closest” means that X(l) minimizes the sum of the 
squares of the difference of the elements of X and X(l), ∑ij|xij – x(l)

ij|2. 
One way to calculate the SVD is to first calculate VT and S by diagonalizing XTX: 
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T2T VVSXX = , (5.3) 

and then to calculate U as follows: 

 U , (5.4) 1−= XVS

where the (r+1),...,n columns of V for which sk = 0 are ignored in the matrix multiplication of 
Equation 5.4. Choices for the remaining n-r singular vectors in V or U may be calculated using 
the Gram-Schmidt orthogonalization process or some other extension method. In practice there 
are several methods for calculating the SVD that are of higher accuracy and speed. Section 4 lists 
some references on the mathematics and computation of SVD.  

Relation to principal component analysis. There is a direct relation between PCA and SVD in 
the case where principal components are calculated from the covariance matrix4. If one 
conditions the data matrix X by centering5 each column, then XTX = Σigigi

T is proportional to the 
covariance matrix of the variables of gi (i.e., the covariance matrix of the assays6). By 
Equation 5.3, diagonalization of XTX yields VT, which also yields the principal components of 
{gi}. So, the right singular vectors {vk} are the same as the principal components of {gi}. The 
eigenvalues of XTX are equivalent to sk

2, which are proportional to the variances of the principal 
components. The matrix US then contains the principal component scores, which are the 
coordinates of the genes in the space of principal components. 

If instead each row of X is centered, XXT = Σjajaj
T is proportional to the covariance matrix of 

the variables of aj (i.e. the covariance matrix of the genes7). In this case, the left singular vectors 
{uk} are the same as the principal components of {aj}. The sk

2 are again proportional to the 
variances of the principal components. The matrix SVT again contains the principal component 
scores, which are the coordinates of the assays in the space of principal components.  

Relation to Fourier analysis. Application of SVD in data analysis has similarities to Fourier 
analysis. As is the case with SVD, Fourier analysis involves expansion of the original data in an 
orthogonal basis:  

∑=
k

mjk
ikij ecx /2πi  (5.5) 

The connection with SVD can be explicitly illustrated by normalizing8 the vector {ei2πjk/m} and 
by naming it v'k: 

∑∑ ==
k

jkkikjk
k

ikij vsuvbx ''''  (5.6) 

which generates the matrix equation X = U'S'V'T, similar to Equation 5.1. Unlike the SVD, 
however, even though the {v'k} are an orthonormal basis, the {u'k} are not in general orthogonal. 
Nevertheless this demonstrates how the SVD is similar to a Fourier transform, where the vectors 
{vk} are determined in a very specific way from the data using Equation 5.1, rather than being 
given at the outset as for the Fourier transform. Similar to low-pass filtering in Fourier analysis, 
later we will describe how SVD analysis permits filtering by concentrating on those singular 
vectors that have the highest singular values. 
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1.2 Illustrative applications 

SVD and PCA have found wide-ranging applications. Here we describe several that may 
suggest potential ways that we can think about applications in gene expression analysis.  

Image processing and compression. The property of SVD to provide the closest rank-l 
approximation for a matrix X (Equation 5.2) can be used in image processing for compression and 
noise reduction, a very common application of SVD. By setting the small singular values to zero, 
we can obtain matrix approximations whose rank equals the number of remaining singular values 
(see Equation 5.2). Each term ukskvk

T  is called a principal image. Very good approximations can 
often be obtained using only a small number of terms (Richards, 1993). SVD is applied in similar 
ways to signal processing problems (Deprettere, 1988). 

Immunology. One way to capture global prototypical immune response patterns is to use PCA 
on data obtained from measuring antigen-specific IgM (dominant antibody in primary immune 
responses) and IgC (dominant antibody in secondary immune responses) immunoglobulins using 
ELISA assays. Fesel and Coutinho (Fesel and Coutinho, 1998) measured IgM and IgC responses 
in Lewis and Fischer rats before and at three time points after immunization with myelin basic 
protein (MBP) in complete Freud's adjuvant (CFA), which is known to provoke experimental 
allergic encephalomeyelitis (EAE). They discovered distinct and mutually independent 
components of IgM reaction repertoires, and identified a small number of strain-specific 
prototypical regulatory responses.  

Molecular dynamics. PCA and SVD analysis methods have been developed for characterizing 
protein molecular dynamics trajectories (Garcia, 1992; Romo et al., 1995). In a study of 
myoglobin, Romo et al. used molecular dynamics methods to obtain atomic positions of all atoms 
sampled during the course of a simulation. The higher principal components of the dynamics 
were found to correspond to large-scale motions of the protein. Visualization of the first three 
principal components revealed an interesting type of trajectory that was described as resembling 
beads on a string, and revealed a visibly sparse sampling of the configuration space. 

Small-angle scattering. SVD has been used to detect and characterize structural intermediates 
in biomolecular small-angle scattering experiments (Chen et al., 1996). This study provides a 
good illustration of how SVD can be used to extract biologically meaningful signals from the 
data. Small-angle scattering data were obtained from partially unfolded solutions of lysozyme, 
each consisting of a different mix of folded, collapsed and unfolded states.  The data for each 
sample was in the form of intensity values sampled at on the order of 100 different scattering 
angles. UV spectroscopy was used to determine the relative amounts of folded, collapsed and 
unfolded lysozyme in each sample. SVD was used in combination with the spectroscopic data to 
extract a scattering curve for the collapsed state of the lysozyme, a structural intermediate that 
was not observed in isolation.  

Information Retrieval. SVD became very useful in Information Retrieval (IR) to deal with 
linguistic ambiguity issues. IR works by producing the documents most associated with a set of 
keywords in a query. Keywords, however, necessarily contain much synonymy (several keywords 
refer to the same concept) and polysemy (the same keyword can refer to several concepts). For 
instance, if the query keyword is "feline", traditional IR methods will not retrieve documents 
using the word "cat" – a problem of synonymy. Likewise, if the query keyword is "java", 
documents on the topic of Java as a computer language, Java as an Island in Indonesia, and Java 
as a coffee bean will all be retrieved – a problem of polysemy. A technique known Latent 
Semantic Indexing (LSI) (Berry et al., 1995) addresses these problems by calculating the best 
rank-l approximation of the keyword-document matrix using its SVD. This produces a lower 
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dimensional space of singular vectors that are called eigen-keywords and eigen-documents. Each 
eigen-keyword can be associated with several keywords as well as particular senses of keywords. 
In the synonymy example above,  "cat" and "feline" would therefore be strongly correlated with 
the same eigen-keyterm. Similarly, documents using "Java" as a computer language tend to use 
many of the same keywords, but not many of the keywords used by documents describing "Java" 
as coffee or Indonesia. Thus, in the space of singular vectors, each of these senses of "java" is 
associated with distinct eigen-keywords.  

2. SVD ANALYSIS OF GENE EXPRESSION DATA 

As we mention in the introduction, gene expression data are well suited to analysis using 
SVD/PCA. In this section we provide examples of SVD-based analysis methods as applied to 
gene expression analysis. Before illustrating specific techniques, we will discuss ways of 
interpreting the SVD in the context of gene expression data. This interpretation and the 
accompanying nomenclature will serve as a foundation for understanding the methods described 
later.  

A natural question for a biologist to ask is: “What is the biological significance of the SVD?” 
There is, of course, no general answer to this question, as it depends on the specific application. 
We can, however, consider classes of experiments and provide them as a guide for individual 
cases. For this purpose we define two broad classes of applications under which most studies will 
fall: systems biology applications, and diagnostic applications (see below). In both cases, the n 
columns of the gene expression data matrix X correspond to assays, and the m rows correspond to 
the genes. The SVD of X produces two orthonormal bases, one defined by right singular vectors 
and the other by left singular vectors. Referring to the definitions in section 1.1, the right singular 
vectors span the space of the gene transcriptional responses {gi} and the left singular vectors span 
the space of the assay expression profiles {aj}. Following the convention of (Alter et al., 2000), 
we refer to the left singular vectors {uk} as eigenassays and to the right singular vectors {vk} as 
eigengenes9. We sometimes refer to an eigengene or eigenassay generically as a singular vector, 
or, by analogy with PCA, as a component. Eigengenes, eigenassays and other definitions and 
nomenclature in this section are depicted in Figure 5.1. 

In systems biology applications, we generally wish to understand relations among genes. The 
signal of interest in this case is the gene transcriptional response gi. By Equation 5.1, the SVD 
equation for gi is  

∑
=

=
r

k
kkiki misu

1

,...,1:,vg  (5.7) 

which is a linear combination of the eigengenes {vk}. The ith row of U, g'i (see Figure 5.1), 
contains the coordinates of the ith gene in the coordinate system (basis) of the scaled eigengenes, 
skvk. If r < n, the transcriptional responses of the genes may be captured with fewer variables 
using g'i rather than gi. This property of the SVD is sometimes referred to as dimensionality 
reduction. In order to reconstruct the original data, however, we still need access to the 
eigengenes, which are n-dimensional vectors. Note that due to the presence of noise in the 
measurements, r = n in any real gene expression analysis application, though the last singular 
values in S may be very close to zero and thus irrelevant. 
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In diagnostic applications, we may wish to classify tissue samples from individuals with and 
without a disease. Referring to the definitions in section 1.1, the signal of interest in this case is 
the assay expression profile aj. By Equation 5.1, the SVD equation for aj is 

  (5.8) ∑
=

=
r

k
kkjkj njsv

1

,...,1:,ua

which is a linear combination of the eigenassays {uk}. The jth column of VT, a'j (see Figure 5.1), 
contains the coordinates of the jth assay in the coordinate system (basis) of the scaled eigenassays, 
skuk. By using the vector a'j, the expression profiles of the assays may be captured by r ≤ n 
variables, which is always fewer than the m variables in the vector aj. So, in contrast to gene 
transcriptional responses, SVD can generally reduce the number of variables used to represent the 
assay expression profiles. Similar to the case for genes, however, in order to reconstruct the 
original data, we need access to the eigenassays, which are m-dimensional vectors. 

 

Figure 5.1. Graphical depiction of SVD of a matrix X, annotated with notations adopted in this chapter. 

Indeed, analysis of the spectrum formed by the singular values sk can lead to the determination 
that fewer than n components capture the essential features in the data, a topic discussed below in 
section 2.1.1. In the literature the number of components that results from such an analysis is 
sometimes associated with the number of underlying biological processes that give rise to the 
patterns in the data. It is then of interest to ascribe biological meaning to the significant 
eigenassays (in the case of diagnostic applications), or eigengenes (in the case of systems biology 
applications).  Even though each component on its own may not necessarily be biologically 
meaningful, SVD can aid in the search for biologically meaningful signals (see, e.g., small-angle 
scattering in section 1.2).  

In the context of describing scatter plots in section 2.1.2, we discuss the application of SVD to 
the problem of grouping genes by transcriptional response, and grouping assays by expression 
profile. This discussion will also touch on the topic of searching for biologically meaningful 
signals. When the data are noisy, it may not be possible to resolve gene groups, but it still may be 
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of interest to detect underlying gene expression patterns; this is a case where the utility of the 
SVD distinguishes itself with respect to other gene expression analysis methods (section 2.2). 
Finally we discuss some published examples of gene expression analysis using SVD, and a 
couple of SVD-based gene grouping methods (section 2.3). 

2.1 Visualization of the SVD 

Visualization is central to understanding the results of application of SVD to gene expression 
data. For example, Figure 5.2 illustrates plots that are derived from applying SVD to Cho et al.’s 
budding yeast cell-cycle data set (Cho et al., 1998). In the experiment, roughly 6,200 yeast genes 
were monitored for 17 time points taken at ten-minute intervals. To perform the SVD, we have 
pre-processed the data by replacing each measurement with its logarithm, and normalizing each 
gene’s transcriptional response to have zero mean and unit standard deviation. In addition, a serial 
correlation test (Kanji, 1993) was applied to filter out ~3,200 genes that showed primarily random 
fluctuations. The plots reveal interesting patterns in the data that we may wish to investigate 
further: a levelling off of the relative variance after the first five components (Figure 5.2a); a 
pattern in the first eigengene primarily resembling a steady decrease, or decay (Figure 5.2b); and 
patterns with cyclic structure in the second and third eigengenes (Figure 5.2c,d). 

 

Figure 5.2. Visualization of the SVD of cell cycle data. Plots of relative variance (a); and the first (b), second (c) and 
third (d) eigengenes are shown. The methods of visualization employed in each panel are described in section 2.1. 

These data inspired our choice of the sine and exponential patterns for the synthetic data of section 2.1. 

To aid our discussion of visualization, we use a synthetic time series data set with 14 
sequential expression level assays (columns of X) of 2,000 genes (rows of X). Use of a synthetic 
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data set enables us to provide simple illustrations that can serve as a foundation for understanding 
the more complex patterns that arise in real gene expression data. Genes in our data set have one 
of three kinds of transcriptional response, inspired by experimentally observed patterns in the Cho 
et al. cell-cycle data: 1) noise (1,600 genes); 2) noisy sine pattern (200 genes); or 3) noisy 
exponential pattern (200 genes).  Noise for all three groups of genes was modelled by sampling 
from a normal distribution with zero mean and standard deviation 0.5. The sine pattern has the 
functional form asin(2πt/140), and the exponential pattern the form be-t/100, where a is sampled 
uniformly over the interval (1.5,3), b is sampled uniformly over (4,8), t is the time (in minutes) 
associated with each assay, and time points are sampled every ten minutes beginning at t = 0.  
Each gene’s transcriptional response was centered to have a mean of zero. Figure 5.3 depicts 
genes of type 2) and 3).  

 

Figure 5.3. Gene transcriptional responses from the synthetic data set. Overlays of a) five noisy sine wave genes and b) 
five noisy exponential genes.  

2.1.1 Visualization of the matrices S, V T and U 

Singular value spectrum. The diagonal values of S (i.e., sk) make up the singular value 
spectrum, which is easily visualized in a one-dimensional plot. The height of any one singular 
value is indicative of its importance in explaining the data. More specifically, the square of each 
singular value is proportional to the variance explained by each singular vector. The relative 
variances sk

2(∑isi
2)-1 are often plotted (Figure 5.4a; see also Figure 5.2).  Cattell has referred to 

these kinds of plots as scree plots (Cattell, 1966) and proposed to use them as a graphical method 
to decide on the significant components. If the original variables are linear combinations of a 
smaller number of underlying variables, combined with some low-level noise, the plot will tend 
to drop sharply for the singular values associated with the underlying variables and then much 
more slowly for the remaining singular values. Singular vectors (in our case eigenassays and 
eigengenes) whose singular values plot to the right of such an “elbow” are ignored because they 
are assumed to be mainly due to noise. For our synthetic data set, the spectrum begins with a 
sharp decrease, and levels off after the second component, which is indicative of the two 
underlying signals in the data (Figure 5.4a). Other heuristic approaches for deciding on the 
significant components have been proposed. One approach is to ignore components beyond 
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where the cumulative relative variance or singular value becomes larger than a certain threshold, 
usually defined upon the dimensionality of the data. For our example data set, the first two 
singular vectors explain about 64% of the total variance in the data (Figure 5.4a). Everitt and 
Dunn propose an alternate approach based on comparing the relative variance of each component 
to 0.7/n (Everitt and Dunn, 2001). For our example data set this threshold is (0.7/14) = 0.05, 
which selects the first two singular vectors as significant. Notice that if we re-construct the matrix 
X by using only the first two singular vectors, we would obtain X(2) (the best rank-2 
approximation of X), which would account for 64% of the variance in the data. 

Eigengenes. When assays correspond to samplings of an ordinal or continuous variable (e.g., 
time; radiation dose; toxin concentration), a plot of the elements of the eigengenes {vk} may 
reveal recognizable patterns. In our example, the first two eigengenes show an obvious cyclic 
structure (Figure 5.4b,c; see also Figure 5.2). Neither eigengene is exactly like the underlying sine 
or exponential pattern; each such pattern, however, is closely approximated by a linear 
combination of the eigengenes. Sine wave and exponential patterns cannot simultaneously be 
right singular vectors, as they are not orthogonal. This illustrates the point that, although the most 
significant eigengenes may not be biologically meaningful in and of themselves, they may be 
linearly combined to form biologically meaningful signals.  

 

Figure 5.4. Visualization of the SVD of the synthetic data matrix. a) Singular value spectrum in a relative variance plot. 
The first two singular values account for 64% of the variance.  The first (b), second (c), and third (d) eigengenes are 

plotted vs. time (assays) in the remaining panels. The third eigengene lacks the obvious cyclic structure of the first and 
second.   

When assays correspond to discrete experimental conditions (e.g., mutational varieties; tissue 
types; distinct individuals), visualization schemes are similar to those described below for 

9 



10 Chapter 5
 

eigenassays. When the jth element of eigengene k is of large-magnitude, the jth assay is understood 
to contribute relatively strongly to the variance of eigenassay k, a property that may be used for 
associating a group of assays.  

Eigenassays.  Alter et al. have visualized eigenassays {uk} resulting from SVD analysis of 
cell-cycle data (Alter et al., 2000) by adapting a previously developed color-coding scheme  for 
visualization of gene expression data matrices (Eisen et al., 1998). Individual elements of U are 
displayed as rectangular pixels in an image, and color-coded using green for negative values, and 
red for positive values, the intensity being correlated with the magnitude. The rows of matrix U 
can be sorted using correlation to the eigengenes. In Alter et al.’s study, this scheme sorted the 
genes by the phase of their periodic pattern. The information communicated in such visualization 
bears some similarity to visualization using scatter plots, with the advantage that the table-like 
display enables gene labels to be displayed along with the eigenassays, and the disadvantage that 
differences among the genes can only be visualized in one dimension. 

2.1.2 Scatter plots 

Visualization of structure in high-dimensional data requires display of the data in a one-, two-, 
or three-dimensional subspace. SVD identifies subspaces that capture most of the variance in the 
data. Even though our discussion here is about visualization in subspaces obtained by SVD, the 
illustrated visualization techniques are general and can in most cases be applied for visualization 
in other subspaces (see section 4 for techniques that use other criteria for subspace selection). 

For gene expression analysis applications, we may want to classify samples in a diagnostic 
study, or classify genes in a systems biology study. Projection of data into SVD subspaces and 
visualization with scatter plots can reveal structures in the data that may be used for classification. 
Here we discuss the visualization of features that may help to distinguish gene groups by 
transcriptional response. Analogous methods are used to distinguish groups of assays by 
expression profile. We discuss two different sources of gene “coordinates” for scatter plots: 
projections of the transcriptional response onto eigengenes, and correlations of the transcriptional 
response with eigengenes. 

Projection and correlation scatter plots. Projection scatter plot coordinates qik for 
transcriptional response gi projected on eigengene vk are calculated as qik = gi·vk. The SVD of X 
readily allows computation of these coordinates using the equation XV = US, so that qik = (US)ik. 
The projection of gene transcriptional responses from our example data onto the first two 
eigengenes reveals the a priori structure in the data (Figure 5.5a). The groups of the 200 sine 
wave genes (bottom right cluster), and the 200 exponential decay genes (top right cluster) are 
clearly separated from each other and from the 1,600 pure noise genes, which cluster about the 
origin.   

Correlation scatter plots may be obtained by calculating the Pearson correlation coefficient of 
each gene’s transcriptional response with the eigengenes:  

11 −−⋅= kikiikr vgvg δδδδ  (5.9) 

where rik denotes the correlation coefficient of the transcriptional response gi with eigengene vk; 
δgi is the mean-centered gi, the elements of which are {xij - <xij>j}i, and δvk is the mean-centered 
vk, the elements of which are {vjk - <vjk>j}k. The normalization leads to –1 ≤ rik ≤ 1. Note that if 
each gi is pre-processed to have zero mean and unit variance, it follows that the correlation scatter 
plot is equivalent to the projection scatter plot (gi = δgi implies vk = δvk; and |δgi|-1 = |δvk|-1 = 1). 
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In the projection scatter plot, genes with a relatively high-magnitude coordinate on the k-axis 
contribute relatively strongly to the variance of the kth eigengene in the data set. The farther a 
gene lies away from the origin, the stronger the contribution of that gene is to the variance 
accounted for by the subspace. In the correlation scatter plot, genes with a relatively high-
magnitude coordinate on the k-axis have transcriptional responses that are relatively highly 
correlated with the kth eigengene.  

Due to the normalization in correlation scatter plots, genes with similar patterns in their 
transcriptional responses, but with different amplitudes, can appear to cluster more tightly in a 
correlation scatter plot than in a projection scatter plot. Genes that correlate well with the 
eigengenes lie near the perimeter, a property that can be used in algorithms that seek to identify 
interesting genes. At the same time, low-amplitude noise genes can appear to be magnified in a 
correlation scatter plot. For our example data, the sine wave and exponential gene clusters are 
relatively tightened, the scatter of the noise genes appears to be increased, and the separation 
between signal and noise genes is decreased for the correlation vs. the projection scatter plot 
(Figure 5.5).  

 

Figure 5.5. SVD scatter plots. Genes from our synthetic example data set are displayed in a) a projection scatter plot; 
and b) a correlation scatter plot. The bottom right cluster corresponds to sine wave genes, and the top right cluster 

corresponds to exponential decay genes. The cluster of genes around the origin corresponds to the noise-only genes.  

The projection scatter plot (Figure 5.5a) illustrates how SVD may be used to aid in detection 
of biologically meaningful signals. In this case, the position (q1, q2) of any cluster center10 may be 
used to construct the cluster’s transcriptional response g from the right singular vectors:  

2211 vvg qq +=  (5.10) 

If the first and second singular vectors are biologically meaningful in and of themselves, the 
cluster centers will lie directly on the axes of the plot. For our synthetic data, the first and second 
singular vectors are combined to approximately generate the sine wave and exponential patterns. 

11 



12 Chapter 5
 

SVD and related methods are particularly valuable analysis methods when the distribution of 
genes is more complicated than the simple distributions in our example data: for instance, SVD 
has been used to characterize ring-like distributions of genes such as are observed in scatter plots 
of cell-cycle gene expression data (Alter et al., 2000; Holter et al., 2000) (see section 2.3). 

Scatter plots of assays. Assays can be visualized in scatter plots using methods analogous to 
those used for genes. Coordinates for projection scatter plots are obtained by taking the dot 
products aj·uk of expression profiles on eigenassays, and coordinates for correlation scatter plots 
are obtained by calculating the Pearson correlation coefficient δaj·δuk|δaj|-1|δuk|-1. Such plots are 
useful for visualizing diagnostic data, e.g., distinguishing groups of individuals according to 
expression profiles. Alter et al. used such a technique to visualize cell-cycle assays (Alter et al., 
2000), and were able to associate individual assays with different phases of the cell cycle.  
 

2.2 Detection of weak expression patterns 

As noise levels in the data increase, it is increasingly difficult to obtain separation of gene 
groups in scatter plots. In such cases SVD may still be able to detect weak patterns in the data that 
may be associated with biological effects. In this respect SVD and related methods provide 
information that is unique among commonly used analysis methods. 

 

Figure 5.6. SVD-based detection of weak signals. a) A plot of the first eigengene shows the structure of the weak sine 
wave signal that contributes to the transcriptional response for half of the genes. b) The second eigengene resembles 
noise. c) A relative variance plot for the first six singular values shows an elbow after the first singular value. d) The 
signal and noise genes are not separated in an eigengene scatter plot of 150 of the signal genes, and 150 of the noise-

only genes.  
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Here we will use an example to illustrate the ability of SVD to detect patterns in gene 
transcriptional response even though the individual genes may not clearly separate in a scatter 
plot. A data matrix was generated using two kinds of transcriptional response: 1,000 genes 
exhibiting a sine pattern, sin(2πt/140), with added noise sampled from a normal distribution of 
zero mean and standard deviation 1.5; and 1,000 genes with just noise sampled from the same 
distribution. Upon application of SVD, we find that the first eigengene shows a coherent sine 
pattern (Figure 5.6a). The second eigengene is dominated by high-frequency components that can 
only come from the noise (Figure 5.6b), and the singular value spectrum has an elbow after the 
first singular value (Figure 5.6c), suggesting (as we know a priori) that there is only one 
interesting signal in the data. Even though the SVD detected the cyclic pattern in the first 
eigengene (Figure 5.6a), the sine wave and noise-only genes are not clearly separated in the SVD 
eigengene projection scatter plot (Figure 5.6d). 

2.3 Examples from the literature 

Cell-cycle gene expression data display strikingly simple patterns when analyzed using SVD. 
Here we discuss two different studies that, despite having used different pre-processing methods, 
have produced similar results (Alter et al., 2000; Holter et al., 2000). Both studies found cyclic 
patterns for the first two eigengenes, and, in two-dimensional correlation scatter plots, previously 
identified cell cycle genes tended to plot towards the perimeter of a disc. Alter et al. used 
information in SVD correlation scatter plots to obtain a result that 641 of the 784 cell-cycle genes 
identified in (Spellman et al., 1998) are associated with the first two eigengenes. Holter et al. 
displayed previously identified cell-cycle gene clusters in scatter plots, revealing that cell-cycle 
genes were relatively uniformly distributed in a ring-like feature around the perimeter, leading 
Holter et al. to suggest that cell-cycle gene regulation may be a more continuous process than had 
been implied by the previous application of clustering algorithms. 

Raychaudhuri et al.’s study of yeast sporulation time series data (Raychaudhuri et al., 2000) is 
an early example of application of PCA to microarray analysis. In this study, over 90% of the 
variance in the data was explained by the first two components of the PCA. The first principal 
component contained a strong steady-state signal. Projection scatter plots were used in an attempt 
to visualize previously identified gene groups, and to look for structures in the data that would 
indicate separation of genes into groups. No clear structures were visible that indicated any 
separation of genes in scatter plots. Holter et al.’s more recent SVD analysis of yeast sporulation 
data (Holter et al., 2000) made use of a different pre-processing scheme from that of 
Raychaudhuri et al. The crucial difference is that the rows and columns of X in Holter et al.’s 
study were iteratively centered and normalized. In Holter et al.’s analysis, the first two 
eigengenes were found to account for over 60% of the variance for yeast sporulation data. The 
first two eigengenes were significantly different from those of Raychaudhuri et al., with no 
steady-state signal, and, most notably, structure indicating separation of gene groups was visible 
in the data. Below we discuss the discrepancy between these analyses of yeast sporulation data.  

3. DISCUSSION 

Selection of an appropriate pre-processing method is critical, and comparisons of results using 
different methods must always take the pre-processing into account. By inspecting the SVD of 
data, one can potentially evaluate different pre-processing choices by gaining insight into, e.g., 

13 
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separability in scatter plots. The utility of SVD itself, however, depends on the choice of pre-
processing, as the apparent discrepancy between the sporulation analyses described in section 2.3 
illustrates. While structure was revealed in yeast sporulation data using the SVD on centered, 
normalized data  (Holter et al., 2000), structure was not visible using SVD on the original data 
(Raychaudhuri et al., 2000), where the first component accounted for the steady-state gene 
expression levels. There are no hard rules to be applied, but in general the decision of how to pre-
process the data should be made based on the statistics of the data, what questions are being 
asked, and what methods are being used to reveal information about those questions. As an 
example, performing a centering of gene transcriptional responses for time series data is often 
sensible because we are typically more interested in how a gene’s transcriptional response varies 
over time than we are in its steady-state expression level. 

An important capability distinguishing SVD and related methods from other analysis methods 
is the ability to detect weak signals in the data. Even when the structure of the data does not allow 
separation of data points, causing clustering algorithms to fail, it may be possible to detect 
biologically meaningful patterns. In section 2.2 we have given an example of this phenomenon 
using synthetic data. As an example of practical use of this kind of SVD-based analysis, it may be 
possible to detect whether the expression profile of a tissue culture changes in response to 
radiation dose, even when it is not possible to detect which specific genes change their expression 
in response to radiation dose. 

SVD allows us to obtain the true dimensionality of our data, which is the rank r of matrix X. 
As the number of genes m is generally (at least presently) greater than the number of assays n, the 
matrix VT generally yields a representation of the assay expression profiles using a reduced 
number of variables. When r < n, the matrix U yields a representation of the gene transcriptional 
responses using a reduced number of variables. Although this property of the SVD is commonly 
referred to as dimensionality reduction, we note that any reconstruction of the original data 
requires generation of an m × n matrix, and thus requires a mapping that involves all of the 
original dimensions. Given the noise present in real data, in practice the rank of matrix X will 
always be n, leading to no dimensionality reduction for the gene transcriptional responses. It may 
be possible to detect the “true” rank r by ignoring selected components, thereby reducing the 
number of variables required to represent the gene transcriptional responses. As discussed above, 
existing SVD-based methods for pre-processing based on this kind of feature selection must be 
used with caution. 

Current thoughts about use of SVD/PCA for gene expression analysis often include 
application of SVD as pre-processing for clustering. Clustering algorithms can be applied using, 
e.g., the coordinates calculated for scatter plots instead of the original data points. Yeung and 
Ruzzo have characterized the effectiveness of gene clustering both with and without pre-
processing using PCA (Yeung and Ruzzo, 2001). The pre-processing consisted of using PCA to 
select only the highest-variance principal components, thereby choosing a reduced number of 
variables for each gene’s transcriptional response. The reduced variable sets were used as inputs 
to clustering algorithms. Better performance was observed without pre-processing for the tested 
algorithms and the data used, and the authors generally recommend against using PCA as a pre-
processing step for clustering. The sole focus on gene clustering, however, in addition to the 
narrow scope of the tested algorithms and data, limit the implications of the results of this study. 
For example, when grouping assays is of interest, using {Sa'j} instead of {aj} (see section 2; 
Figure 5.1) enables use of a significantly reduced number of variables (r vs. m) that account for 
all of the structure in the distribution of assays. Use of the reduced variable set for clustering must 
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therefore result in not only decreased compute time, but also clusters of equal or higher quality. 
Thus the results in (Yeung and Ruzzo, 2001) for gene clustering do not apply to assay clustering. 

In section 2.3 we discuss how, rather than separating into well-defined groups, cell-cycle 
genes tend to be more continuously distributed in SVD projections. For instance, when plotting 
the correlations of genes with the first two right singular vectors, cell-cycle genes appear to be 
relatively uniformly distributed about a ring. This structure suggests that, rather than using a 
classification method that groups genes according to their co-location in the neighborhood of a 
point (e.g., k-means clustering), one should choose a classification method appropriate for dealing 
with ring-like distributions. Previous cell-cycle analyses therefore illustrate the fact that one 
important use of SVD is to aid in selection of appropriate classification methods by investigation 
of the dimensionality of the data.  

In this chapter we have concentrated on conveying a general understanding of the application 
of SVD analysis to gene expression data. Here we briefly mention several specific SVD-based 
methods that have been published for use in gene expression analysis. For gene grouping, the 
gene shaving algorithm (Hastie et al., 2000) and SVDMAN (Wall et al., 2001) are available. An 
important feature to note about both gene shaving and SVDMAN is that each gene may be a 
member of more than one group. For evaluation of data, SVDMAN uses SVD-based interpolation 
of deleted data to detect sampling problems when the assays correspond to a sampling of an 
ordinal or continuous variable (e.g., time series data). A program called SVDimpute 
(Troyanskaya et al., 2001) implements an SVD-based algorithm for imputing missing values in 
gene expression data. Holter et al. have developed an SVD-based method for analysis of time 
series expression data (Holter et al., 2001). The algorithm estimates a time translation matrix that 
describes evolution of the expression data in a linear model. Yeung et al. have also made use of 
SVD in a method for reverse engineering linearly coupled models of gene networks (Yeung et al., 
2002). 

It is important to note that application of SVD and PCA to gene expression analysis is 
relatively recent, and that methods are currently evolving. Presently, gene expression analysis in 
general tends to consist of iterative applications of interactively performed analysis methods. The 
detailed path of any given analysis depends on what specific scientific questions are being 
addressed. As new inventions emerge, and further techniques and insights are obtained from other 
disciplines, we mark progress towards the goal of an integrated, theoretically sound approach to 
gene expression analysis. 

4. FURTHER READING AND RESOURCES 

The book (Jolliffe, 1986) is a fairly comprehensive reference on PCA (a new edition is meant 
to appear in summer of 2002); it gives interpretations of PCA and provides many example 
applications, with connections to and distinctions from other techniques such as correspondence 
analysis and factor analysis. For more details on the mathematics and computation of SVD, good 
references are (Golub and Van Loan, 1996), (Strang, 1998), (Berry, 1992), and (Jessup and 
Sorensen, 1994). SVDPACKC has been developed to compute the SVD algorithm (Berry et al., 
1993). Some web resources on SVD are found at the following URL’s: 
http://www.cs.ut.ee/~toomas_l/linalg/; http://www.lapeth.ethz.ch/~david/diss/node10.html; and 
http://www.stanford.edu/class/cs205/notes/book/book.html. SVD is used in the solution of 
unconstrained linear least squares problems, matrix rank estimation, and canonical correlation 
analysis (Berry, 1992). 

15 



16 Chapter 5
 

                                                     

Applications of PCA and/or SVD to gene expression data have been published in (Alter et al., 
2000; Holter et al., 2000; Holter et al., 2001; Raychaudhuri et al., 2000; Troyanskaya et al., 2001; 
Yeung and Ruzzo, 2001; Yeung et al., 2002). In addition, SVDMAN (Wall et al., 2001) and gene 
shaving (Hastie et al., 2000) are published SVD-based grouping algorithms; SVDMAN is free 
software available at http://home.lanl.gov/svdman. Knudsen illustrates some of the uses of PCA 
for visualization of gene expression data (Knudsen, 2002).  

Everitt, Landau and Leese (Everitt et al., 2001) present PCA as a special case of Projection 
Pursuit (Friedman and Tukey, 1974). Projection Pursuit, which in general attempts to find an 
“interesting projection” for the data, is also related to Independent Component Analysis (ICA) 
(Hyvärinen, 1999). ICA attempts to find a linear transformation (non-linear generalizations are 
possible) of the data so that the derived components are as statistically independent from each 
other as possible. Hyvärinen discusses ICA and how it relates to PCA and Projection Pursuit 
(Hyvärinen, 1999). Liebermeister has applied ICA to gene expression data (Liebermeister, 2002).  

Other techniques that are related to PCA and SVD for visualization of data are 
Multidimensional Scaling (Borg and Groenen, 1997) and Self-Organizing Maps (SOM) 
(Kohonen, 2001). Both of these techniques use non-linear mappings of the data to find lower-
dimensional representations. SOM’s have been applied to gene expression data in (Tamayo et al., 
1999).  There are also non-linear generalizations of PCA (Jolliffe, 1986; Scholkopf et al., 1996).  
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1 For simplicity, we use the term microarray to refer to all varieties of global gene expression technologies. 
2 Complete understanding of the material in this chapter requires a basic understanding of linear algebra. We find 

mathematical definitions to be the only antidote to the many confusions that can arise in discussion of SVD and 
PCA.  

3 The rank of a matrix is the number of linearly independent rows or columns. 
4 The covariance between variables x and y is C(x,y) = (N-1)-1Σi(xi-<x>)(yi-<y>), where N is the # of observations, and 

i=1,…,N. Elements of the covariance matrix for a set of variables {z(k)} are given by cij = C(z(i),z(j)). 
5 A centered vector is one with zero mean value for the elements. 
6 Note that (XTX)ij = ai·aj 
7 Note that (XXT)ij = gi·gj 
8 A normalized vector is one with unit length.  
9 This notation is similar to that used in (Alter et al., 2000), save that we use the term eigenassay instead of eigenarray. 
10 A cluster center is the average position of the points in a cluster. 
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