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Abstract:  This chapter describes gene expression analysis by Singular Value Decomposition
(SVD), emphasizing initial characterization of the data. We describe SVD methods
for visualization of gene expression data, representation of the data using a smaller
number of variables, and detection of patterns in noisy gene expression data. In
addition, we describe the precise relation between SVD analysis and Principal
Component Analysis (PCA) when PCA is calculated using the covariance matrix,
enabling our descriptions to apply equally well to either method. Our aim is to
provide definitions, interpretations, examples, and references that will serve as
resources for understanding and extending the application of SVD and PCA to gene
expression analysis.

1. INTRODUCTION

One of the challenges of bioinformatics is to develop effective ways to analyze global gene
expression data. A rigorous approach to gene expression analysis must involve an up-front
characterization of the structure of the data. In addition to a broader utility in analysis methods,
singular value decomposition (SVD) and principal component analysis (PCA) can be valuable
tools in obtaining such a characterization. SVD and PCA are common techniques for analysis of
multivariate data, and gene expression data are well suited to analysis using SVD/PCA. A single
microarray' experiment can generate measurements for thousands, or even tens of thousands of
genes. Present experiments typically consist of less than ten assays, but can consist of hundreds
(Hughes et al., 2000). Gene expression data are currently rather noisy, and SVD can detect and
extract small signals from noisy data.

The goal of this chapter is to provide precise explanations of the use of SVD and PCA for
gene expression analysis, illustrating methods using simple examples. We describe SVD methods
for visualization of gene expression data, representation of the data using a smaller number of
variables, and detection of patterns in noisy gene expression data. In addition, we describe the
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mathematical relation between SVD analysis and Principal Component Analysis (PCA) when
PCA is calculated using the covariance matrix, enabling our descriptions to apply equally well to
either method. Our aims are 1) to provide descriptions and examples of the application of SVD
methods and interpretation of their results; 2) to establish a foundation for understanding previous
applications of SVD to gene expression analysis; and 3) to provide interpretations and references
to related work that may inspire new advances.

In section 1, the SVD is defined, with associations to other methods described. A summary of
previous applications is presented in order to suggest directions for SVD analysis of gene
expression data. In section 2 we discuss applications of SVD to gene expression analysis,
including specific methods for SVD-based visualization of gene expression data, and use of SVD
in detection of weak expression patterns. Some examples are given of previous applications of
SVD to analysis of gene expression data. Our discussion in section 3 gives some general advice
on the use of SVD analysis on gene expression data, and includes references to specific published
SVD-based methods for gene expression analysis. Finally, in section 4, we provide information
on some available resources and further reading.

1.1 Mathematical definition of the SVD?

Let X denote an m X n matrix of real-valued data and rank’ r, where without loss of generality
m 2 n, and therefore » < n. In the case of microarray data, x;; is the expression level of the ™ gene
in the /™ assay. The elements of the i row of X form the n-dimensional vector g;, which we refer
to as the transcriptional response of the i™ gene. Alternatively, the elements of the /™ column of X
form the m-dimensional vector a;, which we refer to as the expression profile of the ™ assay.

The equation for singular value decomposition of X is the following:

X=UsrT, (5.1)

where U is an m X n matrix, S is an 7 X n diagonal matrix, and " is also an n x n matrix. The
columns of U are called the left singular vectors, {u,}, and form an orthonormal basis for the
assay expression profiles, so that u;u; = 1 for i = j, and w;u; = 0 otherwise. The rows of d
contain the elements of the right singular vectors, {v;}, and form an orthonormal basis for the
gene transcriptional responses. The elements of S are only nonzero on the diagonal, and are called
the singular values. Thus, S= diag(s,...,s,). Furthermore, s,>0 for 1<k<r, and 5,=0 for
(r+1) < k < n. By convention, the ordering of the singular vectors is determined by high-to-low
sorting of singular values, with the highest singular value in the upper left index of the S matrix.
Note that for a square, symmetric matrix X, singular value decomposition is equivalent to
diagonalization, or solution of the eigenvalue problem.
One important result of the SVD of X is that

/
X0 =N us vl (5.2)
k=1

is the closest rank-/ matrix to X. The term “closest” means that X’ minimizes the sum of the
squares of the difference of the elements of X and X, ¥;lx; — x¥;[".
One way to calculate the SVD is to first calculate V' and S by diagonalizing X" X:
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XX =ysyT, (5.3)
and then to calculate U as follows:
U=xvs™, (5.4)

where the (#+1),...,n columns of V' for which s, =0 are ignored in the matrix multiplication of
Equation 5.4. Choices for the remaining n-r singular vectors in V' or U may be calculated using
the Gram-Schmidt orthogonalization process or some other extension method. In practice there
are several methods for calculating the SVD that are of higher accuracy and speed. Section 4 lists
some references on the mathematics and computation of SVD.

Relation to principal component analysis. There is a direct relation between PCA and SVD in
the case where principal components are calculated from the covariance matrix®. If one
conditions the data matrix X by centering’ each column, then X' X = Z,g,g" is proportional to the
covariance matrix of the variables of g; (i.e., the covariance matrix of the assays®). By
Equation 5.3, diagonalization of X'X yields V', which also yields the principal components of
{g:}. So, the right singular vectors {v,} are the same as the principal components of {g;}. The
eigenvalues of XX are equivalent to s,>, which are proportional to the variances of the principal
components. The matrix US then contains the principal component scores, which are the
coordinates of the genes in the space of principal components.

If instead each row of X is centered, XX* = Z;a;a;" is proportional to the covariance matrix of
the variables of a; (i.e. the covariance matrix of the genes’). In this case, the left singular vectors
{u,} are the same as the principal components of {a;}. The s> are again proportional to the
variances of the principal components. The matrix SV’ again contains the principal component
scores, which are the coordinates of the assays in the space of principal components.

Relation to Fourier analysis. Application of SVD in data analysis has similarities to Fourier
analysis. As is the case with SVD, Fourier analysis involves expansion of the original data in an
orthogonal basis:

x; = ZCikeimk/m (5.5)
’

The connection with SVD can be explicitly illustrated by normalizing® the vector {¢*™"} and
by naming it v's:

X; = Zbikv'jk = Zu'ik SV (5.6)
k 3

which generates the matrix equation X = U'S'V", similar to Equation 5.1. Unlike the SVD,
however, even though the {v';} are an orthonormal basis, the {u's} are not in general orthogonal.
Nevertheless this demonstrates how the SVD is similar to a Fourier transform, where the vectors
{v;} are determined in a very specific way from the data using Equation 5.1, rather than being
given at the outset as for the Fourier transform. Similar to low-pass filtering in Fourier analysis,
later we will describe how SVD analysis permits filtering by concentrating on those singular
vectors that have the highest singular values.
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1.2 Ilustrative applications

SVD and PCA have found wide-ranging applications. Here we describe several that may
suggest potential ways that we can think about applications in gene expression analysis.

Image processing and compression. The property of SVD to provide the closest rank-/
approximation for a matrix X (Equation 5.2) can be used in image processing for compression and
noise reduction, a very common application of SVD. By setting the small singular values to zero,
we can obtain matrix approximations whose rank equals the number of remaining singular values
(see Equation 5.2). Each term ws,v;' is called a principal image. Very good approximations can
often be obtained using only a small number of terms (Richards, 1993). SVD is applied in similar
ways to signal processing problems (Deprettere, 1988).

Immunology. One way to capture global prototypical immune response patterns is to use PCA
on data obtained from measuring antigen-specific [gM (dominant antibody in primary immune
responses) and IgC (dominant antibody in secondary immune responses) immunoglobulins using
ELISA assays. Fesel and Coutinho (Fesel and Coutinho, 1998) measured IgM and IgC responses
in Lewis and Fischer rats before and at three time points after immunization with myelin basic
protein (MBP) in complete Freud's adjuvant (CFA), which is known to provoke experimental
allergic encephalomeyelitis (EAE). They discovered distinct and mutually independent
components of IgM reaction repertoires, and identified a small number of strain-specific
prototypical regulatory responses.

Molecular dynamics. PCA and SVD analysis methods have been developed for characterizing
protein molecular dynamics trajectories (Garcia, 1992; Romo et al., 1995). In a study of
myoglobin, Romo et al. used molecular dynamics methods to obtain atomic positions of all atoms
sampled during the course of a simulation. The higher principal components of the dynamics
were found to correspond to large-scale motions of the protein. Visualization of the first three
principal components revealed an interesting type of trajectory that was described as resembling
beads on a string, and revealed a visibly sparse sampling of the configuration space.

Small-angle scattering. SVD has been used to detect and characterize structural intermediates
in biomolecular small-angle scattering experiments (Chen et al., 1996). This study provides a
good illustration of how SVD can be used to extract biologically meaningful signals from the
data. Small-angle scattering data were obtained from partially unfolded solutions of lysozyme,
each consisting of a different mix of folded, collapsed and unfolded states. The data for each
sample was in the form of intensity values sampled at on the order of 100 different scattering
angles. UV spectroscopy was used to determine the relative amounts of folded, collapsed and
unfolded lysozyme in each sample. SVD was used in combination with the spectroscopic data to
extract a scattering curve for the collapsed state of the lysozyme, a structural intermediate that
was not observed in isolation.

Information Retrieval. SVD became very useful in Information Retrieval (IR) to deal with
linguistic ambiguity issues. IR works by producing the documents most associated with a set of
keywords in a query. Keywords, however, necessarily contain much synonymy (several keywords
refer to the same concept) and polysemy (the same keyword can refer to several concepts). For
instance, if the query keyword is "feline", traditional IR methods will not retrieve documents
using the word "cat" — a problem of synonymy. Likewise, if the query keyword is "java",
documents on the topic of Java as a computer language, Java as an Island in Indonesia, and Java
as a coffee bean will all be retrieved — a problem of polysemy. A technique known Latent
Semantic Indexing (LSI) (Berry et al., 1995) addresses these problems by calculating the best
rank-/ approximation of the keyword-document matrix using its SVD. This produces a lower
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dimensional space of singular vectors that are called eigen-keywords and eigen-documents. Each
eigen-keyword can be associated with several keywords as well as particular senses of keywords.
In the synonymy example above, "cat" and "feline" would therefore be strongly correlated with
the same eigen-keyterm. Similarly, documents using "Java" as a computer language tend to use
many of the same keywords, but not many of the keywords used by documents describing "Java"
as coffee or Indonesia. Thus, in the space of singular vectors, each of these senses of "java" is
associated with distinct eigen-keywords.

2. SVD ANALYSIS OF GENE EXPRESSION DATA

As we mention in the introduction, gene expression data are well suited to analysis using
SVD/PCA. In this section we provide examples of SVD-based analysis methods as applied to
gene expression analysis. Before illustrating specific techniques, we will discuss ways of
interpreting the SVD in the context of gene expression data. This interpretation and the
accompanying nomenclature will serve as a foundation for understanding the methods described
later.

A natural question for a biologist to ask is: “What is the biological significance of the SVD?”
There is, of course, no general answer to this question, as it depends on the specific application.
We can, however, consider classes of experiments and provide them as a guide for individual
cases. For this purpose we define two broad classes of applications under which most studies will
fall: systems biology applications, and diagnostic applications (see below). In both cases, the n
columns of the gene expression data matrix X correspond to assays, and the m rows correspond to
the genes. The SVD of X produces two orthonormal bases, one defined by right singular vectors
and the other by left singular vectors. Referring to the definitions in section 1.1, the right singular
vectors span the space of the gene transcriptional responses {g;} and the left singular vectors span
the space of the assay expression profiles {a;}. Following the convention of (Alter et al., 2000),
we refer to the left singular vectors {u} as eigenassays and to the right singular vectors {v;} as
eigengenes’. We sometimes refer to an eigengene or eigenassay generically as a singular vector,
or, by analogy with PCA, as a component. Eigengenes, eigenassays and other definitions and
nomenclature in this section are depicted in Figure 5.1.

In systems biology applications, we generally wish to understand relations among genes. The
signal of interest in this case is the gene transcriptional response g, By Equation 5.1, the SVD
equation for g; is

g = zuikskvk’ i: 1,...,m (57)
k=1

which is a linear combination of the eigengenes {v;}. The /" row of U, g' (see Figure 5.1),
contains the coordinates of the i™ gene in the coordinate system (basis) of the scaled eigengenes,
sivi. If ¥ <n, the transcriptional responses of the genes may be captured with fewer variables
using g'; rather than g;. This property of the SVD is sometimes referred to as dimensionality
reduction. In order to reconstruct the original data, however, we still need access to the
eigengenes, which are n-dimensional vectors. Note that due to the presence of noise in the
measurements, » =7 in any real gene expression analysis application, though the last singular
values in S may be very close to zero and thus irrelevant.
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In diagnostic applications, we may wish to classify tissue samples from individuals with and
without a disease. Referring to the definitions in section 1.1, the signal of interest in this case is
the assay expression profile a;. By Equation 5.1, the SVD equation for a; is

a, = ZV‘/kSkllk, j:L..,n (5.8)
k=1

which is a linear combination of the eigenassays {u;}. The /" column of V", a'; (see Figure 5.1),
contains the coordinates of the /™ assay in the coordinate system (basis) of the scaled eigenassays,
syug. By using the vector a';, the expression profiles of the assays may be captured by » < n
variables, which is always fewer than the m variables in the vector a;. So, in contrast to gene
transcriptional responses, SVD can generally reduce the number of variables used to represent the
assay expression profiles. Similar to the case for genes, however, in order to reconstruct the
original data, we need access to the eigenassays, which are m-dimensional vectors.

X=US"

Ligenassay Singular FEigengene
A Ve i
3 Value -~ al,
& n u, n / F_n % n
—
I

1

nxn n*xn 11571

Figure 5.1. Graphical depiction of SVD of a matrix X, annotated with notations adopted in this chapter.

Indeed, analysis of the spectrum formed by the singular values s; can lead to the determination
that fewer than » components capture the essential features in the data, a topic discussed below in
section 2.1.1. In the literature the number of components that results from such an analysis is
sometimes associated with the number of underlying biological processes that give rise to the
patterns in the data. It is then of interest to ascribe biological meaning to the significant
eigenassays (in the case of diagnostic applications), or eigengenes (in the case of systems biology
applications). Even though each component on its own may not necessarily be biologically
meaningful, SVD can aid in the search for biologically meaningful signals (see, e.g., small-angle
scattering in section 1.2).

In the context of describing scatter plots in section 2.1.2, we discuss the application of SVD to
the problem of grouping genes by transcriptional response, and grouping assays by expression
profile. This discussion will also touch on the topic of searching for biologically meaningful
signals. When the data are noisy, it may not be possible to resolve gene groups, but it still may be
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of interest to detect underlying gene expression patterns; this is a case where the utility of the
SVD distinguishes itself with respect to other gene expression analysis methods (section 2.2).
Finally we discuss some published examples of gene expression analysis using SVD, and a
couple of SVD-based gene grouping methods (section 2.3).

2.1 Visualization of the SVD

Visualization is central to understanding the results of application of SVD to gene expression
data. For example, Figure 5.2 illustrates plots that are derived from applying SVD to Cho et al.’s
budding yeast cell-cycle data set (Cho et al., 1998). In the experiment, roughly 6,200 yeast genes
were monitored for 17 time points taken at ten-minute intervals. To perform the SVD, we have
pre-processed the data by replacing each measurement with its logarithm, and normalizing each
gene’s transcriptional response to have zero mean and unit standard deviation. In addition, a serial
correlation test (Kanji, 1993) was applied to filter out ~3,200 genes that showed primarily random
fluctuations. The plots reveal interesting patterns in the data that we may wish to investigate
further: a levelling off of the relative variance after the first five components (Figure 5.2a); a
pattern in the first eigengene primarily resembling a steady decrease, or decay (Figure 5.2b); and
patterns with cyclic structure in the second and third eigengenes (Figure 5.2¢,d).
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Figure 5.2. Visualization of the SVD of cell cycle data. Plots of relative variance (a); and the first (b), second (c) and
third (d) eigengenes are shown. The methods of visualization employed in each panel are described in section 2.1.
These data inspired our choice of the sine and exponential patterns for the synthetic data of section 2.1.

To aid our discussion of visualization, we use a synthetic time series data set with 14
sequential expression level assays (columns of X) of 2,000 genes (rows of X). Use of a synthetic
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data set enables us to provide simple illustrations that can serve as a foundation for understanding
the more complex patterns that arise in real gene expression data. Genes in our data set have one
of three kinds of transcriptional response, inspired by experimentally observed patterns in the Cho
et al. cell-cycle data: 1) noise (1,600 genes); 2) noisy sine pattern (200 genes); or 3) noisy
exponential pattern (200 genes). Noise for all three groups of genes was modelled by sampling
from a normal distribution with zero mean and standard deviation 0.5. The sine pattern has the
functional form asin(21%/140), and the exponential pattern the form be™'*®, where a is sampled
uniformly over the interval (1.5,3), b is sampled uniformly over (4,8), ¢ is the time (in minutes)
associated with each assay, and time points are sampled every ten minutes beginning at ¢ = 0.
Each gene’s transcriptional response was centered to have a mean of zero. Figure 5.3 depicts
genes of type 2) and 3).
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Figure 5.3. Gene transcriptional responses from the synthetic data set. Overlays of a) five noisy sine wave genes and b)
five noisy exponential genes.

2.1.1 Visualization of the matrices S, V" and U

Singular value spectrum. The diagonal values of S (i.e., s;) make up the singular value
spectrum, which is easily visualized in a one-dimensional plot. The height of any one singular
value is indicative of its importance in explaining the data. More specifically, the square of each
singular value is proportional to the variance explained by each singular vector. The relative
variances s;°(Y;si’)" are often plotted (Figure 5.4a; see also Figure 5.2). Cattell has referred to
these kinds of plots as scree plots (Cattell, 1966) and proposed to use them as a graphical method
to decide on the significant components. If the original variables are linear combinations of a
smaller number of underlying variables, combined with some low-level noise, the plot will tend
to drop sharply for the singular values associated with the underlying variables and then much
more slowly for the remaining singular values. Singular vectors (in our case eigenassays and
eigengenes) whose singular values plot to the right of such an “elbow” are ignored because they
are assumed to be mainly due to noise. For our synthetic data set, the spectrum begins with a
sharp decrease, and levels off after the second component, which is indicative of the two
underlying signals in the data (Figure 5.4a). Other heuristic approaches for deciding on the
significant components have been proposed. One approach is to ignore components beyond
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where the cumulative relative variance or singular value becomes larger than a certain threshold,
usually defined upon the dimensionality of the data. For our example data set, the first two
singular vectors explain about 64% of the total variance in the data (Figure 5.4a). Everitt and
Dunn propose an alternate approach based on comparing the relative variance of each component
to 0.7/n (Everitt and Dunn, 2001). For our example data set this threshold is (0.7/14) = 0.05,
which selects the first two singular vectors as significant. Notice that if we re-construct the matrix
X by using only the first two singular vectors, we would obtain X (the best rank-2
approximation of X), which would account for 64% of the variance in the data.

Eigengenes. When assays correspond to samplings of an ordinal or continuous variable (e.g.,
time; radiation dose; toxin concentration), a plot of the elements of the eigengenes {v,} may
reveal recognizable patterns. In our example, the first two eigengenes show an obvious cyclic
structure (Figure 5.4b,c; see also Figure 5.2). Neither eigengene is exactly like the underlying sine
or exponential pattern; each such pattern, however, is closely approximated by a linear
combination of the eigengenes. Sine wave and exponential patterns cannot simultaneously be
right singular vectors, as they are not orthogonal. This illustrates the point that, although the most
significant eigengenes may not be biologically meaningful in and of themselves, they may be
linearly combined to form biologically meaningful signals.
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Figure 5.4. Visualization of the SVD of the synthetic data matrix. a) Singular value spectrum in a relative variance plot.
The first two singular values account for 64% of the variance. The first (b), second (c), and third (d) eigengenes are
plotted vs. time (assays) in the remaining panels. The third eigengene lacks the obvious cyclic structure of the first and
second.

When assays correspond to discrete experimental conditions (e.g., mutational varieties; tissue
types; distinct individuals), visualization schemes are similar to those described below for
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eigenassays. When the /" element of eigengene k is of large-magnitude, the /™ assay is understood
to contribute relatively strongly to the variance of eigenassay &, a property that may be used for
associating a group of assays.

Eigenassays. Alter et al. have visualized eigenassays {u;} resulting from SVD analysis of
cell-cycle data (Alter et al., 2000) by adapting a previously developed color-coding scheme for
visualization of gene expression data matrices (Eisen et al., 1998). Individual elements of U are
displayed as rectangular pixels in an image, and color-coded using green for negative values, and
red for positive values, the intensity being correlated with the magnitude. The rows of matrix U
can be sorted using correlation to the eigengenes. In Alter et al.’s study, this scheme sorted the
genes by the phase of their periodic pattern. The information communicated in such visualization
bears some similarity to visualization using scatter plots, with the advantage that the table-like
display enables gene labels to be displayed along with the eigenassays, and the disadvantage that
differences among the genes can only be visualized in one dimension.

2.1.2 Scatter plots

Visualization of structure in high-dimensional data requires display of the data in a one-, two-,
or three-dimensional subspace. SVD identifies subspaces that capture most of the variance in the
data. Even though our discussion here is about visualization in subspaces obtained by SVD, the
illustrated visualization techniques are general and can in most cases be applied for visualization
in other subspaces (see section 4 for techniques that use other criteria for subspace selection).

For gene expression analysis applications, we may want to classify samples in a diagnostic
study, or classify genes in a systems biology study. Projection of data into SVD subspaces and
visualization with scatter plots can reveal structures in the data that may be used for classification.
Here we discuss the visualization of features that may help to distinguish gene groups by
transcriptional response. Analogous methods are used to distinguish groups of assays by
expression profile. We discuss two different sources of gene “coordinates” for scatter plots:
projections of the transcriptional response onto eigengenes, and correlations of the transcriptional
response with eigengenes.

Projection and correlation scatter plots. Projection scatter plot coordinates g¢; for
transcriptional response g; projected on eigengene v, are calculated as g;= g;v,. The SVD of X
readily allows computation of these coordinates using the equation XV = US, so that gy = (US)x.
The projection of gene transcriptional responses from our example data onto the first two
eigengenes reveals the a priori structure in the data (Figure 5.5a). The groups of the 200 sine
wave genes (bottom right cluster), and the 200 exponential decay genes (top right cluster) are
clearly separated from each other and from the 1,600 pure noise genes, which cluster about the
origin.

Correlation scatter plots may be obtained by calculating the Pearson correlation coefficient of
each gene’s transcriptional response with the eigengenes:

Iy = 0g; Rs"k|5gf|_l|5"k|_l (5.9)

where 7 denotes the correlation coefficient of the transcriptional response g; with eigengene vy;
dg; is the mean-centered g;, the elements of which are {x; - <x;>};, and dv; is the mean-centered
Vi, the elements of which are {vj - <v>;},. The normalization leads to —1 <7; < 1. Note that if
each g; is pre-processed to have zero mean and unit variance, it follows that the correlation scatter
plot is equivalent to the projection scatter plot (g; = 3g; implies v, = dv;; and |dg " = [dv{' = 1).
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In the projection scatter plot, genes with a relatively high-magnitude coordinate on the k-axis
contribute relatively strongly to the variance of the k™ eigengene in the data set. The farther a
gene lies away from the origin, the stronger the contribution of that gene is to the variance
accounted for by the subspace. In the correlation scatter plot, genes with a relatively high-
magnitude coordinate on the k-axis have transcriptional responses that are relatively highly
correlated with the k™ eigengene.

Due to the normalization in correlation scatter plots, genes with similar patterns in their
transcriptional responses, but with different amplitudes, can appear to cluster more tightly in a
correlation scatter plot than in a projection scatter plot. Genes that correlate well with the
eigengenes lie near the perimeter, a property that can be used in algorithms that seek to identify
interesting genes. At the same time, low-amplitude noise genes can appear to be magnified in a
correlation scatter plot. For our example data, the sine wave and exponential gene clusters are
relatively tightened, the scatter of the noise genes appears to be increased, and the separation
between signal and noise genes is decreased for the correlation vs. the projection scatter plot
(Figure 5.5).
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Figure 5.5. SVD scatter plots. Genes from our synthetic example data set are displayed in a) a projection scatter plot;
and b) a correlation scatter plot. The bottom right cluster corresponds to sine wave genes, and the top right cluster
corresponds to exponential decay genes. The cluster of genes around the origin corresponds to the noise-only genes.

The projection scatter plot (Figure 5.5a) illustrates how SVD may be used to aid in detection

of biologically meaningful signals. In this case, the position (g1, ¢2) of any cluster center'® may be
used to construct the cluster’s transcriptional response g from the right singular vectors:

g=q\Vi T4V, (5.10)

If the first and second singular vectors are biologically meaningful in and of themselves, the
cluster centers will lie directly on the axes of the plot. For our synthetic data, the first and second
singular vectors are combined to approximately generate the sine wave and exponential patterns.
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SVD and related methods are particularly valuable analysis methods when the distribution of
genes is more complicated than the simple distributions in our example data: for instance, SVD
has been used to characterize ring-like distributions of genes such as are observed in scatter plots
of cell-cycle gene expression data (Alter et al., 2000; Holter et al., 2000) (see section 2.3).

Scatter plots of assays. Assays can be visualized in scatter plots using methods analogous to
those used for genes. Coordinates for projection scatter plots are obtained by taking the dot
products a;-u; of expression profiles on eigenassays, and coordinates for correlation scatter plots
are obtained by calculating the Pearson correlation coefficient Sai-éuk|83j|"l|8uk\'l. Such plots are
useful for visualizing diagnostic data, e.g., distinguishing groups of individuals according to
expression profiles. Alter e al. used such a technique to visualize cell-cycle assays (Alter et al.,
2000), and were able to associate individual assays with different phases of the cell cycle.

2.2 Detection of weak expression patterns

As noise levels in the data increase, it is increasingly difficult to obtain separation of gene
groups in scatter plots. In such cases SVD may still be able to detect weak patterns in the data that
may be associated with biological effects. In this respect SVD and related methods provide
information that is unique among commonly used analysis methods.

Chapter 5
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Figure 5.6. SVD-based detection of weak signals. a) A plot of the first eigengene shows the structure of the weak sine
wave signal that contributes to the transcriptional response for half of the genes. b) The second eigengene resembles
noise. ¢) A relative variance plot for the first six singular values shows an elbow after the first singular value. d) The
signal and noise genes are not separated in an eigengene scatter plot of 150 of the signal genes, and 150 of the noise-

only genes.
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Here we will use an example to illustrate the ability of SVD to detect patterns in gene
transcriptional response even though the individual genes may not clearly separate in a scatter
plot. A data matrix was generated using two kinds of transcriptional response: 1,000 genes
exhibiting a sine pattern, sin(21#/140), with added noise sampled from a normal distribution of
zero mean and standard deviation 1.5; and 1,000 genes with just noise sampled from the same
distribution. Upon application of SVD, we find that the first eigengene shows a coherent sine
pattern (Figure 5.6a). The second eigengene is dominated by high-frequency components that can
only come from the noise (Figure 5.6b), and the singular value spectrum has an elbow after the
first singular value (Figure 5.6¢), suggesting (as we know a priori) that there is only one
interesting signal in the data. Even though the SVD detected the cyclic pattern in the first
eigengene (Figure 5.6a), the sine wave and noise-only genes are not clearly separated in the SVD
eigengene projection scatter plot (Figure 5.6d).

23 Examples from the literature

Cell-cycle gene expression data display strikingly simple patterns when analyzed using SVD.
Here we discuss two different studies that, despite having used different pre-processing methods,
have produced similar results (Alter et al., 2000; Holter et al., 2000). Both studies found cyclic
patterns for the first two eigengenes, and, in two-dimensional correlation scatter plots, previously
identified cell cycle genes tended to plot towards the perimeter of a disc. Alter et al. used
information in SVD correlation scatter plots to obtain a result that 641 of the 784 cell-cycle genes
identified in (Spellman et al., 1998) are associated with the first two eigengenes. Holter et al.
displayed previously identified cell-cycle gene clusters in scatter plots, revealing that cell-cycle
genes were relatively uniformly distributed in a ring-like feature around the perimeter, leading
Holter et al. to suggest that cell-cycle gene regulation may be a more continuous process than had
been implied by the previous application of clustering algorithms.

Raychaudhuri et al.’s study of yeast sporulation time series data (Raychaudhuri et al., 2000) is
an early example of application of PCA to microarray analysis. In this study, over 90% of the
variance in the data was explained by the first two components of the PCA. The first principal
component contained a strong steady-state signal. Projection scatter plots were used in an attempt
to visualize previously identified gene groups, and to look for structures in the data that would
indicate separation of genes into groups. No clear structures were visible that indicated any
separation of genes in scatter plots. Holter ef al.’s more recent SVD analysis of yeast sporulation
data (Holter et al., 2000) made use of a different pre-processing scheme from that of
Raychaudhuri et al. The crucial difference is that the rows and columns of X in Holter ef al.’s
study were iteratively centered and normalized. In Holter et al.’s analysis, the first two
eigengenes were found to account for over 60% of the variance for yeast sporulation data. The
first two eigengenes were significantly different from those of Raychaudhuri et al., with no
steady-state signal, and, most notably, structure indicating separation of gene groups was visible
in the data. Below we discuss the discrepancy between these analyses of yeast sporulation data.

3. DISCUSSION

Selection of an appropriate pre-processing method is critical, and comparisons of results using
different methods must always take the pre-processing into account. By inspecting the SVD of
data, one can potentially evaluate different pre-processing choices by gaining insight into, e.g.,
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separability in scatter plots. The utility of SVD itself, however, depends on the choice of pre-
processing, as the apparent discrepancy between the sporulation analyses described in section 2.3
illustrates. While structure was revealed in yeast sporulation data using the SVD on centered,
normalized data (Holter et al., 2000), structure was not visible using SVD on the original data
(Raychaudhuri et al., 2000), where the first component accounted for the steady-state gene
expression levels. There are no hard rules to be applied, but in general the decision of how to pre-
process the data should be made based on the statistics of the data, what questions are being
asked, and what methods are being used to reveal information about those questions. As an
example, performing a centering of gene transcriptional responses for time series data is often
sensible because we are typically more interested in how a gene’s transcriptional response varies
over time than we are in its steady-state expression level.

An important capability distinguishing SVD and related methods from other analysis methods
is the ability to detect weak signals in the data. Even when the structure of the data does not allow
separation of data points, causing clustering algorithms to fail, it may be possible to detect
biologically meaningful patterns. In section 2.2 we have given an example of this phenomenon
using synthetic data. As an example of practical use of this kind of SVD-based analysis, it may be
possible to detect whether the expression profile of a tissue culture changes in response to
radiation dose, even when it is not possible to detect which specific genes change their expression
in response to radiation dose.

SVD allows us to obtain the true dimensionality of our data, which is the rank 7 of matrix X.
As the number of genes m is generally (at least presently) greater than the number of assays 7, the
matrix V' generally yields a representation of the assay expression profiles using a reduced
number of variables. When » < n, the matrix U yields a representation of the gene transcriptional
responses using a reduced number of variables. Although this property of the SVD is commonly
referred to as dimensionality reduction, we note that any reconstruction of the original data
requires generation of an m X n matrix, and thus requires a mapping that involves all of the
original dimensions. Given the noise present in real data, in practice the rank of matrix X will
always be n, leading to no dimensionality reduction for the gene transcriptional responses. It may
be possible to detect the “true” rank » by ignoring selected components, thereby reducing the
number of variables required to represent the gene transcriptional responses. As discussed above,
existing SVD-based methods for pre-processing based on this kind of feature selection must be
used with caution.

Current thoughts about use of SVD/PCA for gene expression analysis often include
application of SVD as pre-processing for clustering. Clustering algorithms can be applied using,
e.g., the coordinates calculated for scatter plots instead of the original data points. Yeung and
Ruzzo have characterized the effectiveness of gene clustering both with and without pre-
processing using PCA (Yeung and Ruzzo, 2001). The pre-processing consisted of using PCA to
select only the highest-variance principal components, thereby choosing a reduced number of
variables for each gene’s transcriptional response. The reduced variable sets were used as inputs
to clustering algorithms. Better performance was observed without pre-processing for the tested
algorithms and the data used, and the authors generally recommend against using PCA as a pre-
processing step for clustering. The sole focus on gene clustering, however, in addition to the
narrow scope of the tested algorithms and data, limit the implications of the results of this study.
For example, when grouping assays is of interest, using {Sa';} instead of {a;} (see section 2;
Figure 5.1) enables use of a significantly reduced number of variables (» vs. m) that account for
all of the structure in the distribution of assays. Use of the reduced variable set for clustering must
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therefore result in not only decreased compute time, but also clusters of equal or higher quality.
Thus the results in (Yeung and Ruzzo, 2001) for gene clustering do not apply to assay clustering.

In section 2.3 we discuss how, rather than separating into well-defined groups, cell-cycle
genes tend to be more continuously distributed in SVD projections. For instance, when plotting
the correlations of genes with the first two right singular vectors, cell-cycle genes appear to be
relatively uniformly distributed about a ring. This structure suggests that, rather than using a
classification method that groups genes according to their co-location in the neighborhood of a
point (e.g., k-means clustering), one should choose a classification method appropriate for dealing
with ring-like distributions. Previous cell-cycle analyses therefore illustrate the fact that one
important use of SVD is to aid in selection of appropriate classification methods by investigation
of the dimensionality of the data.

In this chapter we have concentrated on conveying a general understanding of the application
of SVD analysis to gene expression data. Here we briefly mention several specific SVD-based
methods that have been published for use in gene expression analysis. For gene grouping, the
gene shaving algorithm (Hastie ef al., 2000) and SVDMAN (Wall et al., 2001) are available. An
important feature to note about both gene shaving and SVDMAN is that each gene may be a
member of more than one group. For evaluation of data, SVDMAN uses SVD-based interpolation
of deleted data to detect sampling problems when the assays correspond to a sampling of an
ordinal or continuous variable (e.g., time series data). A program called SVDimpute
(Troyanskaya et al., 2001) implements an SVD-based algorithm for imputing missing values in
gene expression data. Holter ef al. have developed an SVD-based method for analysis of time
series expression data (Holter ef al., 2001). The algorithm estimates a time translation matrix that
describes evolution of the expression data in a linear model. Yeung et al. have also made use of
SVD in a method for reverse engineering linearly coupled models of gene networks (Yeung ef al.,
2002).

It is important to note that application of SVD and PCA to gene expression analysis is
relatively recent, and that methods are currently evolving. Presently, gene expression analysis in
general tends to consist of iterative applications of interactively performed analysis methods. The
detailed path of any given analysis depends on what specific scientific questions are being
addressed. As new inventions emerge, and further techniques and insights are obtained from other
disciplines, we mark progress towards the goal of an integrated, theoretically sound approach to
gene expression analysis.

4. FURTHER READING AND RESOURCES

The book (Jolliffe, 1986) is a fairly comprehensive reference on PCA (a new edition is meant
to appear in summer of 2002); it gives interpretations of PCA and provides many example
applications, with connections to and distinctions from other techniques such as correspondence
analysis and factor analysis. For more details on the mathematics and computation of SVD, good
references are (Golub and Van Loan, 1996), (Strang, 1998), (Berry, 1992), and (Jessup and
Sorensen, 1994). SVDPACKC has been developed to compute the SVD algorithm (Berry ef al.,
1993). Some web resources on SVD are found at the following URL’s:
http://www.cs.ut.ee/~toomas_I/linalg/; http://www.lapeth.ethz.ch/~david/diss/node10.html; and
http://www.stanford.edu/class/cs205/notes/book/book.html. SVD is used in the solution of
unconstrained linear least squares problems, matrix rank estimation, and canonical correlation
analysis (Berry, 1992).
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Applications of PCA and/or SVD to gene expression data have been published in (Alter et al.,
2000; Holter et al., 2000; Holter et al., 2001; Raychaudhuri ef al., 2000; Troyanskaya et al., 2001;
Yeung and Ruzzo, 2001; Yeung et al., 2002). In addition, SVDMAN (Wall et al., 2001) and gene
shaving (Hastie et al., 2000) are published SVD-based grouping algorithms; SVDMAN is free
software available at http://home.lanl.gov/svdman. Knudsen illustrates some of the uses of PCA
for visualization of gene expression data (Knudsen, 2002).

Everitt, Landau and Leese (Everitt ef al., 2001) present PCA as a special case of Projection
Pursuit (Friedman and Tukey, 1974). Projection Pursuit, which in general attempts to find an
“interesting projection” for the data, is also related to Independent Component Analysis (ICA)
(Hyvérinen, 1999). ICA attempts to find a linear transformation (non-linear generalizations are
possible) of the data so that the derived components are as statistically independent from each
other as possible. Hyvirinen discusses ICA and how it relates to PCA and Projection Pursuit
(Hyvérinen, 1999). Liebermeister has applied ICA to gene expression data (Liebermeister, 2002).

Other techniques that are related to PCA and SVD for visualization of data are
Multidimensional Scaling (Borg and Groenen, 1997) and Self-Organizing Maps (SOM)
(Kohonen, 2001). Both of these techniques use non-linear mappings of the data to find lower-
dimensional representations. SOM’s have been applied to gene expression data in (Tamayo et al.,
1999). There are also non-linear generalizations of PCA (Jolliffe, 1986; Scholkopf et al., 1996).
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! For simplicity, we use the term microarray to refer to all varieties of global gene expression technologies.

% Complete understanding of the material in this chapter requires a basic understanding of linear algebra. We find
mathematical definitions to be the only antidote to the many confusions that can arise in discussion of SVD and
PCA.

3 The rank of a matrix is the number of linearly independent rows or columns.

* The covariance between variables x and y is C(x,y) = (N-1)"Zi(x<x>)(y~<y>), where N is the # of observations, and
i=1,...,N. Elements of the covariance matrix for a set of variables {z(k)} are given by ¢; = C(z(i),z(j)).

5 A centered vector is one with zero mean value for the elements.

% Note that (X" = a4

7 Note that (XXT)[/ =gg

8 A normalized vector is one with unit length.

% This notation is similar to that used in (Alter et al., 2000), save that we use the term eigenassay instead of eigenarray.

1% A cluster center is the average position of the points in a cluster.
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