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Abstract

DNA microarray technology is the latest and the most advanced tool for parallel measuring of the activity and interactions of
thousands of genes. This modern technology promises new insight into mechanisms of living systems, for example only two high-
density oligonucleotide microarrays are sufficient to inspect the whole human genome. However, it provides unprecedented amount
of data that require application of advanced computational methods. The appropriate choice of data analysis technique depends
both on data and on goals of an experiment. In this paper we focus on two promising methods: singular value decomposition and
support vector machines. We discuss the possibility of application of these methods for different purposes; particularly for
clustering, classification, feature selection and modeling of dynamics of gene expression. We use for testing presented approaches

existing data sets, which are widely available via Internet, and one new tumor/normal thyroid microarray data set.
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1. Introduction

DNA microarrays, i.e. microscopic arrays of large
sets of nucleotide sequences, are modern tool that is
used to obtain information about expression levels of
thousands of genes simultaneously. The main advan-
tages of the technology are reproducibility and scal-
ability of obtained data, short time of performing of a
single experiment and, of course, the large number of
genes, the expressions of which are measured. Micro-
arrays are, in principle and practice, extensions of
hybridization-based methods which have been used for
decades to identify and quantify nucleic acids in
biological samples (e.g. Southern and Northern blots,
colony hybridizations, dot blots). In the typical experi-
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ment, RNA is isolated from tissues of interest, labeled,
either radioactively or fluorescently, and allowed to
hybridize to the array. After sufficient time for
hybridization and following appropriate washing steps,
a digital image of the array is acquired and analyzed to
measure the intensity of hybridization for each gene on
the array. The hypothesis underlying microarray analy-
sis is that the measured intensities for each arrayed gene
represent its expression level.

Currently there are at least two competing types of
DNA microarrays: spotted cDNA microarrays (Duggan
et al., 1999; Schena et al., 1995; Shalon et al., 1996)
developed at Stanford University and oligonucleotide
chips (Lipshutz et al., 1999; Lockhart et al., 1996;
Schadt et al., 1999) developed by Affymetrix. There are
several important differences between these two types of
microarrays (Berrar et al., 2003). Spotted microarrays
consist of a solid surface onto which miniscule amounts
(spots) of single strands of nucleotide sequences are
deposited by an automated process called contact
spotting (similar to ink-jet printing) in grid-like
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arrangement. Each spot represents a specific gene and
serves as a probe against which sample RNA is
hybridized. The single spot has a diameter of approxi-
mately 100 um. In this way 10,000-30,000 probes can be
arranged on the single microarray. However, the
number of probes do not match the number of genes.
For reasons of reproducibility, a gene may be repre-
sented by more than one probe. With oligonucleotide
chips the probes are synthesized on the array on the
basis of the sequences of existing or hypothetical genes
using photolithographic technology (similar to the
technology used in production of electronic chips). The
diameter of each probe spot is approximately 18 um that
allows maximum 500,000 probes per array. Affymetrix
also makes use of multiple probes to represent the genes.
For high-density chips even 22 probes per gene is used,
allowing for up to 23,000 genes per chip.

Most microarray experiments investigate relation-
ships between related biological samples based on gene
expression measurements performed in different condi-
tions. In many cases several samples, for different
tissues, for example normal/tumor tissues or different
disease types are studied. Alternatively, development in
time of one biological phenomenon is studied, leading to
a series of measurements following each other. The aim
of the investigation can be formulated in many different
ways. The most basic problem is to find genes that
exhibit different expression levels under different experi-
mental conditions. Typical studies of this kind include
normal versus malignant sample investigation. Slightly
different problem is to identify co-regulated genes, i.e.
genes whose expression levels vary in a coordinated or
correlated way across conditions. Examining the co-
regulation is often the first step of the analysis leading to
identification of function of novel genes. The functions
of genes with highly similar expression patterns can be
similar or their expression can be regulated by the same
internal (e.g. cell cycle) or external (e.g. exposing to drug
or radiation) factor. In experiments of this kind, time-
course investigations are usually performed allowing
analysis of temporal changes in gene expression. Time-
course experiments are also very useful in gene
regulatory network identification studies. Other impor-
tant application of microarray experiments is clinical
diagnosis aimed at revealing expression patterns that are
characteristic for particular diseases or even for its
distinct subtypes.

Microarray experiments provide enormous amount of
data that require application of advanced computa-
tional methods. The appropriate choice of data analysis
technique depends both on data and on the goals of the
experiment. However, before analysis can be started the
raw data developed from microarrays must be compu-
tationally collected, processed and integrated. This
phase of data preparation is called pre-processing. Pre-
processing is at least three-fold. First, within microarray

normalization is applied to compensate for systematic
measurement errors due to array equipment imperfec-
tion. Second, the multiple measurements are combined
to obtain a single expression level for each gene. Third,
data from different microarrays are integrated into a
single data matrix. To compensate measurement varia-
tion for different arrays an array-to-array normalization
is employed.

Once the final format of the data is achieved
exploratory data analysis can start. As the starting
point, we assume that for each biological sample
assayed a high-quality measurement of the intensity of
hybridization for each gene is obtained on the array.
The intensity values are ordered into an n x m expres-
sion matrix 4. In most applications, the number of
genes investigated is much greater than the number of
time points or samples assayed, i.e. the case n>m is
considered. Each row of matrix of gene expression
corresponds to a different gene and each column
corresponds to a different sample or time instant at
which expression data were measured. The entries of the
matrix 4 are defined by numerical values corresponding
to gene expressions. Usually, the first step of exploratory
analysis is data transformation. The objective of the
transformation is to reduce complexity of the data and
to represent the information in a different, more useful
format. Statistical operations, like data centering and
use of logarithmic transformation, are good examples of
such operations.

The available variety of microarray analysis methods
ranges from classic statistical or vector algebra ap-
proaches, to machine learning techniques and methods
from the field of artificial intelligence.

There are many methods of classification of artificial
intelligence techniques. One of them is division of all
methods into supervised and unsupervised groups of
methods. Supervised methods make use of the informa-
tion about class membership of analyzed samples. In
unsupervised methods such information is not utilized.
In this paper we intend to present two computational
methods, very promising when dealing with gene
expression data, belonging to two different, in this
sense, categories. They are: singular value decomposi-
tion (SVD) which belongs to unsupervised methods and
support vector machines (SVM) which is an example of
a supervised method. We demonstrate in several
examples that these methods are very useful when
dealing with gene expression data sets and can be used in
many practical applications, such as: clustering, classi-
fication, feature selection and modeling of dynamics of
gene expression.

The paper is organized as follows. In Section 2
definition and properties of SVD are presented. In
Section 3 an SVD based algorithm of selection of genes
differentiating groups of samples is addressed. An
example of application of the method to original
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ontological microarray data is given. Section 4 describes
a method of modeling of dynamics of gene expression
time-course data. Sections 5 and 6 focuses on SVM
method and its application to gene selection.

2. Singular value decomposition

Recently, gene expression data were analyzed
using SVD (Alter et al., 2001; Holter et al., 2001;
Raychaudhuri et al., 2000; Simek and Kimmel, 2002).
SVD is a matrix factorization, known from linear vector
algebra, that reveals many important properties of a
matrix. It is a standard tool in many areas of physical
sciences, and many algorithms in matrix algebra make
use of SVD. In gene expression data analysis the
principal aim of application of SVD is to detect and
extract internal structure existing in the data and
corresponding to important relationships between ex-
pressions of different genes.

2.1. Mathematical foundation

The singular value decomposition of any n x m matrix
A has the following form (Golub and van Loan, 1996):

A=USVT, (1)

where Uis an n x n orthonormal matrix, whose columns
are called the left singular vectors of 4 (gene coefficient
vectors), and V' is an m x m orthonormal matrix, whose
columns are called the right singular vectors of A
(expression level vectors). Matrix S'is an m x m diagonal
matrix with the form

S1 0
S = . . )
0 Slﬂ

The diagonal elements of matrix S are listed in a
descending order s;=s5>---s5,>0 and called the
singular values of A.

Some important mathematical properties of the SVD
matrices are presented below.

(1) Singular values of rectangular matrix 4 are equal to
square root of eigenvalues 4, 1,,..., 4,, of matrix
ATA.

(2) Rank of matrix 4 is equal to the number r of
positive singular values: rank(A4)= r, r<m.

(3) Euclidean norm of matrix 4 is equal to the largest
singular value: ||4|],=s.

(4) First r columns of matrix U form an orthonormal
basis for the space spanned by the columns of
matrix 4.

(5) First r columns of matrix V' form an orthonormal
basis for the space spanned by the rows of
matrix 4.

Sometimes, before applying the SVD, data regular-
ization is performed. The regularized rows and columns
of the expression matrix have mean values equal to 0.
Because of this operation the rank of matrix 4 is equal
to r<m—1. Depending on circumstances, polishing can
be desirable or not.

2.2. Characteristic modes

Let us denote by X; the upper r rows of matrix SV
and define matrix

X slvlT
X=1:1=1: 1 (3)
X, s;o8

The orthogonal vectors X; are called characteristic
modes associated with matrix 4.

One can easily show that variations of the jth gene
expression across analyzed samples, included in the row
A; of matrix A, can be written exactly as a linear
combination of the characteristic modes

A4; = Z Ui Xi, “4)
=1

where the coefficients of the combination are the
corresponding entries of matrix U.

Usually not all characteristic modes are needed to
reconstruct gene expression patterns with a reasonable
accuracy. We may use a truncated expression

The contribution of modes to the gene pattern
decreases from the higher order to the lower order
modes. The singular values, which represent the
magnitudes of the corresponding modes, can be used
as measures of relative significance of each characteristic
mode in terms of the fraction of overall expression that
it captures

2

Ky
pi=—1+—, i=1,...,r 5)
l Zj:l 5/2
Similar index can be defined for each gene
_ Upisi)’
¢ = _ (Uas)” (6)

S (Uigs)™

It defines the contribution of the ith mode to the
expression pattern of the kth gene.

There are several heuristic methods to estimate the
number / of the most significant characteristic modes
(Everitt and Dunn, 2001; Jackson, 1991). One of the
simplest is to retain just enough modes to capture
large percentage of overall expression. Usually values of
70-90% are proposed. The other procedure is to exclude
characteristic modes such that the fraction of expression
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pi they capture is less than (70/r)%. Different method is
examination of the so-called scree plots for s7 or log 7.
Using this method one can usually find a natural border
between significant and insignificant singular values (the
so-called elbow).

3. Gene selection using SVD

In the clustering literature, SVD is sometimes applied
to reduce dimensionality of the data set prior to
clustering. The idea behind using SVD prior to cluster
analysis is that SVD may extract the cluster structure in
the data. Since characteristic modes are uncorrelated
and ordered, the first few most significant ones, which
contain most of the variations in the data, are usually
used in cluster analysis.

We aim to investigate the effectiveness of SVD as a
preprocessing step to cluster analysis on gene expression
data. Our approach differs from that known from the
literature, where characteristic modes coefficients (gene
coefficient vectors), instead of original variables, are
used for clustering. We propose to apply SVD to select a
set of original genes and then apply them for clustering
samples by one of the standard algorithms.

3.1. Algorithm of gene selection

The gene selection algorithm inspects gene coefficient
vectors (columns of matrix U) corresponding to the set
of the most significant characteristic modes. Each
coefficient is compared to the threshold value (Wall
et al., 2001), whose meaning is similar to a 3¢ statistical
significance cutoff, equal to Wn "% where n is the
number of genes and W is a weight factor whose
recommended value is greater than 3. If the magnitude
of the eclement is greater than the threshold, the
corresponding gene is selected to the clustering set. In
practice we choose genes having sufficiently big coeffi-
cients for the most important characteristic modes, or in
other words, genes for which values of index (6) for the
most important modes are big enough. Variation of
factor W gives possibility of changing a number of
selected genes. In the result we obtain set of genes
having patterns ‘similar’ to the dominant modes.

3.2. Example of analysis

To illustrate the approach we applied the algorithm to
the gene expression data, consisting of 16 tumor/normal
thyroid tissue pairs, acquired in Center of Oncology,
Gliwice, Poland, using Affymetrix Human Genome
U133A arrays. About 150 mg of tissue was fragmented
and homogenized. Total RNA was extracted and
repurified. The quantity and integrity of RNA were
checked by spectrophotometry and gel electrophoresis.

RNA was taken for a cDNA synthesis reaction followed
by the synthesis of biotin-labeled cRNA. Obtained
cRNAs were fragmented and hybridized to UI33A
arrays. Then washing, staining and scanning of the
arrays in a GeneArray scanner was performed.

The aim of our data mining analysis was to identify
normal (1-16) and tumor (17-32) samples. Since
clustering of original data was not effective, we applied
SVD and found characteristic modes for the data.
Inspection of the modes, presented in Fig. 1, reveals that
the first mode corresponds to the most important trend
in the data, which is tumor/normal feature. It allows
expecting that basing only on this mode the samples can
be split into two proper groups. Applying described
procedure we selected 78 out of over 22,000 genes
(for W=4.5) to be used for clustering. Profiles of the
selected genes are presented in Fig. 2. We applied the
hierarchical complete-linkage clustering algorithm with
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Fig. 1. Five out of 31 characteristic modes for gene expression data.
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Fig. 2. Expression profile of genes selected by means of SVD.
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Fig. 3. Results of hierarchical clustering of samples based on selected
genes.

Euclidean distance metrics to identify normal and tumor
samples. Hierarchical clustering has the advantage that
it is simple and the results can be easily visualized and
interpreted. It has become one of the most commonly
used techniques in the field. The results are presented in
Fig. 3. The analysis proves effectiveness of the proposed
exploratory algorithm.

4. Dynamic model for characteristic modes

Since for time-course studies characteristic modes are
functions of time, we try to find a discrete-time
dynamical model of temporal changes of the modes.
We assume the simplest linear model in which the
expression values at a given time are linear combinations
of the values at a previous time instant.

4.1. Problem formulation

Let us denote by Y(#;) the expression level of all
characteristic modes at time points #;, when gene
expression was measured. Matrix of characteristic
modes (3) can now be rewritten as

X =[Y(), Y(12), ..., Y(tw)] (7

and the dynamical model can be written in the form of a
linear equation:

Y(t+ At)y= MY (1), ®)

where M is a g x ¢ translation matrix, ¢ is a number of
characteristic modes considered in the model, ¢ <m and
At a time step for the dynamical model.

For equally spaced measurements At can be found
from the expression Ar=t;.—t; and ¢=iAt . For
unequally spaced measurements Az is defined as max-

imal time interval such that each measurement time is an
integer multiple of A¢, i.e., t;=n;At.

Since, as mentioned earlier, time-series data often can
be represented by the most significant modes only and a
part of characteristic modes can be excluded, one can try
to build reduced order model taking into account only
small number of variables. In this case the dimension of
vector Y(t,) is ¢=1Dbut the form of the dynamical model
(8) is not changed.

To obtain the model we find matrix M based on the
knowledge of temporal patterns of characteristic modes.
The optimization problem consists of minimization of
the performance index of the form

S _SlYe) - Z)|°
S IY@)IP

where Z(¢) is a time variable described by linear discrete
equation

Z(t) + kA1) = M*Y (1)),

) )

k=12, .., n,

with initial condition Z(#1)=Y(¢;). Since the measure-
ments Y(¢)) are given, the problem consists of finding the
¢° entries of matrix M, which minimize J.

4.2. Methods of solution

(1) Equally spaced measurements and g=r: For equally
spaced measurements and g=r (i.e. full-order model), the
solution of the problem leads to the solution of a linear
system of algebraic equations

Y = YM, (10)

where Y is a square r* x r* matrix and M is a vector
containing transposed rows of matrix M.

Solving the equation one obtains optimal elements of
matrix M. Assuming that matrix ¥ is nonsingular, the
equation has one unique solution and the value of the
index (9) is equal to 0. Standard MATLAB procedures
are used to solve the problem.

(2) Equally spaced measurements and g <r: In the case
of equally spaced measurements and g<r (i.e. reduced-
order model) optimization problem may be brought to
the solution of the equation similar to (10), but now
matrix ¥ is an rq x ¢* rectangular matrix. The resulting
translation matrix M is the solution in the least-squares
sense to the overdetermined system of equations of type
(10). Obtained fitting is not ideal. Again Standard
MATLAB procedures can be applied.

(3) Unequally spaced measurements and gq<r:. For
unequally spaced measurements and the general case
g<r, it is necessary to minimize the goodness of the fit
index J, as defined in (9). In Alter et al., 2001 the authors
used simulated annealing, while we use a standard
Gauss—Newton algorithm (see Branch and Grace, 1996
and references therein for details) as provided in
MATLAB, with very good results. The problem is
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strongly nonlinear and in general very hard to solve,
especially for meaningful differences in measurements
time intervals. Since the applied optimization algorithm
is very sensitive to the choice of the initial guess of the
solution, we apply an original two-step optimization
procedure. In most cases appropriate tuning of para-
meters of optimization is required to obtain a precise
solution.

4.3. Example of analysis

To illustrate the considerations we use publicly
available data on yeast cdc-15 synchronized cell cycle,
described in Spellman et al., (1998). In yeast culture
synchronized by cdc-15 over 6000 genes were monitored
over approximately 2.5 cell cycle periods. We chose
data set consisting of almost 800 genes, classified to
be cell cycle regulated, and 12 measurements at 20 min
intervals, beginning at ¢;=10min. The analysis
consists of two parts. In the first part we built a
dynamical model for the original data. In the second
part, to test the reconstruction properties of dynamical
system fitting, we deleted some data, i.e. two columns
corresponding to measurements at times ¢=70,150,
obtaining a modified data sets with unequally spaced
measurements.

Analysis of singular values and corresponding coeffi-
cients of relative significance, given in Table 1, reveals in
both cases that first two characteristic modes capture
roughly 70% of the overall variability of the expression.
It means that the temporal pattern of gene expression
can be described by the use of two characteristic modes
with reasonable accuracy.

For original data the solution matrix M is unique and
the dynamical model provides an exact reconstruction of
the characteristic modes. In Fig. 4 characteristic modes
of the data sets are presented. It is easy to notice that the
distortion of the data, i.e., deleting two columns,
equivalent to 16% missing data, did not change shapes

Table 1

Singular values and corresponding p; index for analyzed data sets

Part 1 Part 2

S Pi S Pi

38.59 0.43 36.96 0.46

30.50 0.27 27.02 0.27

18.75 0.10 17.41 0.10

15.41 0.07 14.38 0.07

10.97 0.03 10.80 0.04
9.97 0.03 9.27 0.03
8.48 0.02 7.56 0.02
7.62 0.02 6.84 0.02
7.22 0.01 6.10 0.01
6.56 0.01 — —
5.65 0.01 — —

of the original characteristic modes. It proves robustness
of SVD.

Fig. 6 shows reconstruction of characteristic modes
with the use of the full dynamical model. For distorted
data set the reconstruction at the retained measurement
points is very precise. It means that optimization
procedure provides accurate solutions and that the
obtained dynamical model can be used to recover
missing data with reasonable fidelity.

As shown in Figs. 5 and 7, which present reconstruc-
tion of the first two characteristic modes by using
reduced dynamical models in both cases, the main
features of expression patterns are reproduced quite
well. It shows that influence of the high-order modes
on dominant ones is weak and the dominant modes
could be reconstructed basing on a reduced order model
(Figs. 5-7).

Detailed discussion of the properties of the proposed
dynamical models is presented in Simek (2003).
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5. Support vector machines

SVM method (Christianini and Shawe-Tylor, 2000;
Haykin, 1999; Vapnik, 1995) is one of the prospective
tools of analysis for gene expression data coming from
DNA microarrays. This is due to the fact that SVM
method is particularly suitable to cope with “rare” data
sets, i.e. when number of samples is much less than the
number of features (genes). Moreover, as it will be
shown in next section, it is possible to use the SVM
technique for gene selection.

Let us consider a matrix 4 of dimension nxm
containing gene expression data. The matrix A is
composed of m column vectors x;eR"; i=1,2,...,m.

Each vector represents one and only one class w; or m,
(for example tumor or normal tissue). In standard linear
classification problem we are looking for a weight vector
weR" and scalar bias b of a linear classifying
(discriminant) function

fx)=wix+b (11)
which satisfies the following set of inequalities:

wix;+b>0 for xjew,

wix; +b<0 for x;ew,. (12)

When the training set is linearly separable then there
exists such a function.
For the simplicity let us introduce a set of desired
responses (target outputs): {d;},
d = {—i—l when x;em, (13)
—1 when x;ews.

Discriminant function (11) determines, in an n-
dimensional input space, a hyperplane P called a
decision surface. The equation of this surface is as
follows:

wix4+b=0. (14)

For the linearly separable case there are infinite
number of ‘““good” discriminant hyperplanes, i.e.,
satisfying inequalities (12), but only one is optimal in
SVM sense. Optimal hyperplane P° satisfies inequalities
(12), but also maximizes a margin of separation y which
indicates the Euclidean distance p between hyperplane P
and the closest vector. Hence, the problem can be stated
mathematically as follows:

Problem. Find optimal w°® and »° that maximize

y=minp(P,x;), i=1,2,....m (15)
1
subject to constraints (12).

Vectors, for which p(-) takes minimal value, are called
Support vectors.

It can be shown that this problem can be transformed
into a quadratic programming task. Moreover, introdu-
cing so-called slack variables makes possible to deal with
non-separable data sets. In practice, a dual problem to
quadratic programming task is solved and optimal
values of Lagrange multipliers (each corresponding to
one training vector) are calculated.

A lincar SVM is a special case of a more general
nonlinecar SVM constructed by introducing an addi-
tional set of nonlinear functions (nonlinear kernel)
(Christianini and Shawe-Taylor, 2000; Haykin, 1999;
Vapnik, 1995).
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6. SVM in gene selection

One of the benefits of the SVM method, besides its
optimality is presented before sense, is the fact that it
gives unique solution. This method combined with the
so-called leave-one-out cross-validation, which also
gives unique evaluation of generalization ability,
allowed us to formulate a method of features (genes)
selection called recursive feature replacement (RFR)
(Fujarewicz and Wiench, 2003).

6.1. Evaluation of gene subset generalization ability

In this subsection we describe two methods which we
use to evaluate classification quality of particular gene
subset. Both are based on the result of leave-on-out
cross-validation but they use different formulas for
evaluating gene subset generalization ability.

The fact, that is worth recalling here, is that the
recognition system is constructed not to separate
perfectly the training set. The primary goal is rather to
find the feature set (gene set in our application), the
form of the classifying function and the learning
algorithm, for which the samples not being used during
learning phase are classified correctly. In other words,
the learning machine should be characterized by a good
generalization ability.

In general, in the leave-one-out cross-validation
method one vector x; is removed from the training set
and remaining vectors serve during learning phase. After
this it is checked how the removed vector is classified. In
our approach SVM technique is used for finding linear
classification rule. The leave-one-out cross-validation
method, when SVM method is used, can be stated
formally as follows:

1. Remove one vector x; from the training set.
2. For remaining vectors calculate w°® and 5° using SVM
method.
3. For the removed vector x; calculate the function
dy

Foom((6) = 1 W xp + b°) (16)

4. Repeat steps 1-3 for every k=1,2,...,m.

In formula (16) dy is the target output (13) and || ||
denotes the Euclidean norm. Thanks to division by
the norm of w° the absolute value of (16) is equal to
the Euclidean distance between decision surface and the
vector x;. This is because after this normalization
the norm of the gradient of the function (16) is equal
to 1. The positive value of (16) indicates that the vector
Xy 1s correctly classified.

As mentioned above, we use two different perfor-
mance indices based on all values of (16) calculated for
all samples.

The former is a simple percentage index which takes
into account how many samples are correctly classified
in leave-one-out cross-validation

N T
Jor = 33" 100%, (17)

where N, is a number of positive values of (16).
The latter is based only on the worst (minimal) value
among all values of (16)

|
Jery = —=min from(Xk). (18)
vk

In formula (18) the results are divided by square root
of n in order to make results comparable for training
sets with different numbers of genes n. High values of
both (17) and (18) indicate good generalization ability.
If the performance index (18) is positive then all samples
during leave-one-out cross-validation are classified
correctly.

Note that the cross-validation method evaluates
the generalization ability of the whole recognition
system. Since in our approach the form of the
discriminant function and the learning algorithm
are fixed, the outcome of the cross-validation method
presented here depends only on the way of selecting
the gene set. Moreover, for fixed gene subset this
outcome is unique because both: the method of
cross-validation and the SVM technique, give unique
results.

Let us denote by Q the set of numbers of all measured
genes Q=1{1,2,....m}, and by Q*cQ any of its subset.
The symbols

Jeo1 (Q7), (19)
Je2(2%) (20)

will denote the results of evaluating the generalization
ability (17) and (18) of the subset of genes Q™.

6.2. The recursive feature replacement method of gene
selection

As mentioned in introduction, due to high
computational cost, it is impossible to examine all
subsets of thousands of genes the expressions of
which are measured using microarrays. Therefore,
we proposed (Fujarewicz and Wiench, 2003) a new
heuristic and iterative algorithm. In this algorithm
the subset of genes Q* is modified in successive
iterations so that the value of the performance
index increases. Since the performance index (17) takes
only  discrete  values (0%, 1/N100%, 2/
N100%,...,100%) we use second performance index
(18) which has real value.
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The algorithm

1. Read initial subset Q* = Q.

2. Find the single gene of the number keQ™ that
maximizes Jeo (Q*\{k}).

3. Find the single gene of the number /e Q\Q* that
maximizes Joo (Q* U{/}).

4. I Jao((QF\{k}) U{l}) > Jaa(Q%),  then
(Q*\{k}) L {l}, go to step 2.

5. Stop.

QF =

Let p denote the number of genes in the subset Q*.
Note that p does not change in successive iterations of
the algorithm. So, if we want to find optimal subsets for
all p=1,2,...,n the algorithm has to be run for every
p=2,3,...,n—1(for p =1 no recurrence is needed and
for p = n the optimal set is the set Q). In practice, we are
interested in finding the subset for which maximal value
of the performance index J.,, is achieved and it is not
necessary to find all optimal subsets. In most cases the
final value pn.x = 100 is sufficient. Moreover, prior to
using the RFR algorithm a pre-selection may be
performed and the number n is much less than the
number of all genes which expressions are measured.
Typically, calculations on a PC computer, for pp.x =
100 and the number of genes after pre-selection stage
n = 300, takes few hours (it depends on m). As a starting
gene subset Q* for given p we choose p-element subset of
the best genes obtained during the pre-selection stage.
Hence, it is desirable to apply a pre-selection algorithm
which sorts genes. If not, or if several different methods
are used for pre-selection, it is better to sort it. We find
the recurrent feature elimination (RFE) (Guyon et al.,
1999) very useful for this purpose.

In papers (Fujarewicz et al., 2002; Fujarewicz and
Wiench, 2003) we compared the RFR algorithm to
other methods of gene selections such as: the Sebestyen
criterion (Sebestyen, 1962), the correlation coefficient
proposed in the article by Golub et al. (1999), the
method proposed by Szabo et al. (2002), and the RFE
method (Guyon et al., 1999), which is also based on
SVM technique. Among all investigated methods two
methods distinctly outperformed the rest. These meth-
ods are RFR and RFE algorithms. They are comparable
for larger number of genes but for smaller gene subsets
the RFR method is better than the RFE method—gives
smaller gene subset which gives no misclassifications
during the leave-one-out cross-validation.

6.3. Example of analysis

To illustrate the approach, let us apply the RFR
algorithm to the gene expression data, consisting of 16
tumor/normal thyroid tissue pairs used in Section 3.2.

The pre-selection stage was performed using two
different methods of data selection: the Sebestyen

criterion and the correlation coefficient proposed in
Golub et al., (1999). Each method selected 250 genes
and the sum of these two gene subsets was sorted using
the RFE method. The result of application of the RFR
method to the data set is presented in Fig. 8. The
maximum value of the performance index (20) is about
0.774 and it was achieved for the gene subset consisting
of 20 genes. For the comparison, values of the
performance index obtained the RFE method are
presented in the same figure.

Now, let us focus on the following problem: how does
the performance index depend on the number of samples
m? Let us remove randomly a half of samples (8 normal
and 8 tumor tissues) and let us perform RFE algorithm
for both, whole and truncated sets. The result is
presented in Fig. 9. It can be observed that the
performance index is better for smaller set of samples.
This phenomenon can be easily explained when we
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Fig. 8. Comparison of the performance index J., versus number of
genes for gene subsets obtained using RFR and RFE methods.
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Fig. 9. Comparison of the performance index J., for gene subsets
obtained using RFR and RFE methods.
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imagine only two-element data set. In such a case each
differently expressed gene perfectly classifies this train-
ing set. When the data set is small the probability of
finding a good discriminant gene is greater. But on the
other hand, it may be only a case. So it is very important
to remember this fact and to check whether the result is
not obtained by chance.

It can be verified for example by using a permutation
test. We performed 100 permutations of the whole (32
element) training set and the median of the performance
index obtained by using the RFE method' is presented
in Fig. 9. It can be observed that the result of
permutation test is considerably worse and it indicates
that our result (gene subsets) was not achieved by
chance.

7. Conclusion

In this paper we investigated a possibility of using two
computational methods: SVD and SVM to analyze gene
expression data. From the point of view of artificial
intelligence theory these two methods belong to different
class of computational techniques: the SVM method is
an example of supervised method while the SVD method
belongs to class of unsupervised methods.

We discuss the possibility of application of these
methods for different purposes such as: clustering,
classification, feature selection and modeling of dy-
namics of gene expression.

The paper is partly a survey of our previous works
where we applied SVD and SVM methods, and
algorithms based on these methods, to analyze the gene
expression data. Here we applied these methods to new
microarray data set containing expression profiles for
tumor/normal thyroid tissues. Using this data set, we
indicate prospects of application of investigated meth-
ods. A possibility of using the SVD method for gene
selection was examined. We also demonstrated how the
number of samples in the training set influences the
result of the leave-one-out cross-validation. In addition
we suggest permutation tests as a tool to validate the
quality of obtained discriminant gene subsets to avoid
the risk connected with fact that the number of features
(genes) is much greater than the number samples.
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