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Feature	Selection
• Given	a	set	of	n features,	the	goal	of	feature	selection is	to	select	a	

subset	of	d features	(d < n)	in	order	to	minimize	the	classification	error.

• Why perform feature selection?
– Data interpretation\knowledge discovery (insights into which factors 

which are most representative of your problem)
– Curse of dimensionality (amount of data grows exponentially with # of 

features O(2") 

• Fundamentally	different	from	dimensionality	reduction	(we	will	
discuss	next	time)	based	on	feature	combinations	(i.e.,	feature	
extraction).
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Feature	Selection	vs.	
Dimensionality	Reduction	

• Feature	Selection
– When	classifying	novel	patterns,	only	a	small number	of	features	

need	to	be	computed	(i.e.,	faster	classification).
– The	measurement	units	(length,	weight,	etc.)	of	the	features	are	

preserved.

• Dimensionality	Reduction	(next	time)
– When	classifying	novel	patterns,	all features	need	to	be	computed.
– The	measurement	units	(length,	weight,	etc.)	of	the	features	are	

lost.



Feature	Selection	Steps

• Feature	selection	is	an	
optimization problem.

– Step	1: Search	the	space	of	
possible	feature	subsets.

– Step	2: Pick	the	subset	that	is	
optimal	or	near-optimal	with	
respect	to	some	objective	
function.



Feature	Selection	Steps	(cont’d)

Search strategies
– Optimal
– Heuristic

Evaluation strategies
- Filter methods 
- Wrapper methods



Evaluation	Strategies

• Filter Methods
– Evaluation is independent of 

the classification algorithm.

– The objective function 
evaluates feature subsets by 
their information content, 
typically interclass distance, 
statistical dependence or 
information-theoretic 
measures.



Evaluation	Strategies

• Wrapper Methods
– Evaluation uses criteria 
related to the 
classification algorithm.

– The objective function is a 
pattern classifier, which 
evaluates feature subsets 
by their predictive 
accuracy (recognition rate 
on test data) by statistical 
resampling or cross-
validation.



Filter	vs.	Wrapper	Approaches



Filter	vs	Wrapper	Approaches



Search	Strategies
• Assuming n features, an exhaustive search would 

require:

– Examining all           possible subsets of size d.

– Selecting the subset that performs the best according to the 
criterion function.

• The number of subsets grows combinatorially, making 
exhaustive search impractical.

• In practice, heuristics are used to speed-up search but 
they cannot guarantee optimality.
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Naïve	Search

• Sort the given n features in order of their probability of 
correct recognition.

• Select the top d features from this sorted list.

• Disadvantage
– Correlation among features is not considered.
– The best pair of features may not even contain the best 

individual feature.



Sequential	forward	selection	(SFS)
(heuristic	search)

• First, the best single feature is selected (i.e., 
using some criterion function).

• Then, pairs of features are formed using one of 
the remaining features and this best feature, and 
the best pair is selected.

• Next, triplets of features are formed using one 
of the remaining features and these two best 
features, and the best triplet is selected.

• This procedure continues until a predefined 
number of features are selected.
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best when the 
optimal subset is
small.



Example
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Results	of	sequential	forward	feature	selection	for	classification	of	a	satellite	image	
using	28	features.	x-axis	shows	the	classification	accuracy	(%)	and	y-axis	shows	the	
features	added	at	each	iteration	(the	first	iteration	is	at	the	bottom).	The	highest	
accuracy	value	is	shown	with	a	star.

features added at 
each iteration 



Sequential	backward	selection	(SBS)
(heuristic	search)	

• First, the criterion function is computed for all n
features.

• Then, each feature is deleted one at a time, the 
criterion function is computed for all subsets with 
n-1 features, and the worst feature is discarded.

• Next, each feature among the remaining n-1 is 
deleted one at a time, and the worst feature is 
discarded to form a subset with n-2 features.

• This procedure continues until a predefined 
number of features are left.
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SBS performs
best when the 
optimal subset is
large.



Example
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Results	of	sequential	backward feature	selection	for	classification	of	a	satellite	image	
using	28	features.	x-axis	shows	the	classification	accuracy	(%)	and	y-axis	shows	the	
features	removed	at	each	iteration	(the	first	iteration	is	at	the	top).	The	highest	accuracy	
value	is	shown	with	a	star.

features removed at 
each iteration 



Bidirectional	Search	(BDS)
• BDS	applies	SFS	and	SBS	

simultaneously:
– SFS	is	performed	from	the	

empty	set.
– SBS	is	performed	from	the	

full	set.
• To	guarantee	that	SFS	and	SBS	

converge	to	the	same	
solution:
– Features	already	selected	by	

SFS	are	not	removed	by	SBS.
– Features	already	removed	by	

SBS	are	not	added	by	SFS.
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Limitations	of	SFS	and	SBS

• The	main	limitation	of	SFS	is	that	it	is	unable	to	
remove features	that	become	non	useful	after	the	
addition	of	other	features.	

• The	main	limitation	of	SBS	is	its	inability	to	
reevaluate the	usefulness	of	a	feature	after	it	has	
been	discarded.	

• We	will	examine	some	generalizations	of	SFS	and	
SBS:
– Plus-L,	minus-R”		selection	(LRS)
– Sequential	floating	forward/backward	selection	(SFFS	and	
SFBS)



“Plus-L,	minus-R”		selection	(LRS)

• A	generalization	of	SFS	and	SBS
– If	L>R,	LRS	starts	from	the	empty set	and:

• Repeatedly	add	L	features	
• Repeatedly	remove	R	features

– If	L<R,	LRS	starts	from	the	full set	and:
• Repeatedly	removes	R	features
• Repeatedly	add	L	features

Its	main	limitation	is	the	lack	of	a	
theory	to	help	choose	the	optimal	
values	of	L	and	R.



Sequential	floating	forward/backward	
selection	(SFFS	and	SFBS)

• An	extension	to	LRS:
– Rather	than	fixing	the	values	of	L	and	R,	floating	methods	

determine	these	values	from	the	data.
– The	dimensionality	of	the	subset	during	the	search	can	be	

thought	to	be	“floating”	up	and	down

• Two	floating	methods:
– Sequential	floating	forward	selection	(SFFS)	
– Sequential	floating	backward	selection	(SFBS)	

P. Pudil, J. Novovicova, J. Kittler, Floating search methods in feature 
selection, Pattern Recognition Lett. 15 (1994) 1119–1125.



Sequential	floating	forward	selection	
(SFFS)

• Sequential	floating	forward	selection	(SFFS)	starts	from	
the	empty	set.

• After	each	forward	step,	SFFS	performs	backward	steps	
as	long	as	the	objective	function	increases.



Sequential	floating	backward	selection	
(SFBS)

• Sequential	floating	backward	selection	(SFBS)	starts	
from	the	full	set.

• After	each	backward	step,	SFBS	performs	forward	steps	
as	long	as	the	objective	function	increases.



Feature	Selection	using	GAs
(randomized	search)
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• GAs	provide	a	simple,	general,	and	powerful	framework
for	feature	selection.



Feature	Selection	Using	GAs	
(cont’d)

• Binary encoding:	1 means	“choose	feature”	and	0
means	“do	not	choose”	feature.

• Fitness	evaluation	(to	be	maximized)

1 N

Fitness=w1 ´ accuracy + w2 ´ #zeros
Classification 
accuracy using a 
validation set

Number of
features

w1>>w2



Feature	Selection	Summary

• Has	two-fold	advantage	of	providing	some	interpretation	of	
the	data	and	making	the	learning	problem	easier

• Finding	global	optimum	impractical	in	most	situations,	rely	
on	heuristics	instead	(greedy\random	search)

• Filtering	is	fast	and	general	but	can	pick	a	large	#	of	
features

• Wrapping	considers	model	bias	but	is	MUCH	slower	due	to	
training	multiple	models


