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The use of artificial neural networks (ANNs) is described
for predicting the reversed-phase liquid chromatography
retention times of peptides enzymatically digested from
proteome-wide proteins. To enable the accurate compari-
son of the numerous LC/MS data sets, a genetic algorithm
was developed to normalize the peptide retention data
into a range (from 0 to 1), improving the peptide elution
time reproducibility to ∼1%. The network developed in
this study was based on amino acid residue composition
and consists of 20 input nodes, 2 hidden nodes, and 1
output node. A data set of ∼7000 confidently identified
peptides from the microorganism Deinococcus radio-
durans was used for the training of the ANN. The ANN
was then used to predict the elution times for another set
of 5200 peptides tentatively identified by MS/MS from
a different microorganism (Shewanella oneidensis).
The model was found to predict the elution times of
peptides with up to 54 amino acid residues (the longest
peptide identified after tryptic digestion of S. oneidensis)
with an average accuracy of ∼3%. This predictive capabil-
ity was then used to distinguish with high confidence
isobar peptides otherwise indistinguishable by accurate
mass measurements as well as to uncover peptide misi-
dentifications. Thus, integration of ANN peptide elution
time prediction in the proteomic research will increase
both the number of protein identifications and their
confidence.

Proteomics involves the broad and systematic analysis of
proteins, which includes their identification, quantification, and
ultimately the attribution of one or more biological functions.1-3

Proteomic analyses are challenging because of the high complex-
ity and dynamic range of protein abundances. The industrialization
of biology requires that the systematic analysis of expressed
proteins be conducted in a high-throughput manner and with high
sensitivity, further increasing the challenge. Recent technological
advances in instrumentation, bioinformatics and automation have
contributed to this goal. Specifically, in the area of proteomics, it
is evident that greater specificity benefits the ability to deal with
the high complexity of proteomes.4,5 As a result, recent efforts
have focused on improvements in separation speed, resolving
power, and dynamic range, and these methods have generally
been based on the combination of separations with mass spec-
trometry (MS), using correlation of tandem mass spectra with
established protein databases or predictions from genome se-
quence data for identifications.6-8

At the present, there are two major approaches for proteomic
analyses. The first one consists of the off-line combination of two-
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dimensional polyacrylamide electrophoresis (2D-PAGE) with
MS.6,9,10 The proteins are first separated in a gel by their pI and
mass, and then the protein “spots” are enzymatically hydrolyzed,
resulting in peptide mixtures which can be analyzed by matrix-
assisted laser desorption ionization-time-of-flight (MALDI-TOF)
or electrospray (ESI)-MS.7,8,11-12 Another rapidly evolving approach
consists of a global proteome-wide enzymatic digestion followed
by analysis using on-line 1-D or 2-D liquid chromatography (LC)
coupled with ESI-MS. The detection and identification of the
peptides is achieved by tandem MS7,13 or more recently, by
accurate mass measurements (e.g., using Fourier transform ion
cyclotron resonance (FTICR)-MS).8,11,12,14,15

An aspect of proteomic analysis that has not yet been well-
exploited involves use of the information available from LC elution
or retention times. Indeed, retention time in LC is characteristic
and structurally dependent for a defined experiment (mobile phase
composition, stationary phase, etc.). If there were a way to predict
the LC retention time for a given peptide structure, then this could
be used in conjunction with either MS/MS data to improve the
confidence of peptide identifications or to increase the number
of peptide identifications, or with sufficiently high accuracy mass
measurements, to reduce the need for MS/MS data (i.e., if the
combination of elution time and mass accuracy provides sufficient
specificity).

The idea that chromatographic behavior of peptides could be
predicted on the basis of the amino acid composition is not new.
In 1951, Knight16 and Pardee17 showed that synthetic peptide
retention factor (Rf) values on paper chromatography could be
predicted with some accuracy. In 1952, Sanger18 addressed the
problem of isomers by demonstrating that the relationship
between Rf and composition was not absolutely accurate, since
peptides containing the same amino acids but having different
sequences could frequently be separated. More recently, there
have been several reports on the prediction of peptide elution
times in reversed-phase (RP)19-27 or normal phase28,29 liquid

chromatography. These methods used quantitative structure-
chromatographic retention relationships (QSRR’s) (e.g., partial
least-squares or multiple linear regression) for the peptide elution
time prediction. Casal et al.30 demonstrated that partial least-
squares regression provides a better predictive ability with these
models using a mixture of 25 small standard peptides. One
limitation of these models is that they are most effective for
peptides with fewer than 15-20 amino acid residues. Very
recently, Palmblad et al.31 used the predictive capability of the
model previously described19,32,33 (based on the summation of the
coefficients of all amino acid residues) for the prediction of
retention times for tryptic peptides. However, using tryptically
digested commercial proteins as their training set, the accuracy
of the prediction achieved was relatively poor as compared to that
reported previously.31-33

Another approach based on artificial neural networks (ANNs)
has demonstrated better predictive capabilities in several areas
of chemistry, including (i) conformational states for small pep-
tides,34 (ii) carbon-13 nuclear magnetic resonance chemical shifts,35

and (iii) the retention factor or retention time of small molecules
in thin-layer chromatography,36 GC,37-39 and LC.40-42 To our
knowledge, other groups have not yet used ANNs for peptide
elution time prediction. Several reviews of strategies for prediction
of retention in LC as well as the application of ANNs in chemistry
have been published elsewhere.43-45

In this work, we describe the use of an ANN for the prediction
of peptide LC elution times. The development of our initial ANN
model was based on the assumption that peptide elution times
should substantially depend on amino acid compositions. The
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predictive capability of any system is strongly dependent on the
quality of the acquired retention time data. As a result, an approach
based on a genetic algorithm (GA) has been used for the
normalization of any potential variabilities of the training retention
time data sets. The GA allowed ANN training and testing of its
predictive capability using large sets of confidently identified
peptides and their retention times for Deinococcus radiodurans
and Shewanella oneidensis microorganisms. The model’s predicted
retention time information is shown to increase the confidence
of peptide identifications.

EXPERIMENTAL SECTION
Preparation of Tryptic Digests from D. radiodurans and

S. oneidensis. D. radiodurans and S. oneidensis cells were
cultured in TGY medium to an approximate 600OD of 1.2 and
harvested by centrifugation at 10000g at 4 °C. Prior to lysis, cells
were resuspended and washed three times with 100 mM am-
monium bicarbonate and 5 mM EDTA (pH 8.4). Cells were lysed
by beating with 0.1-mm acid zirconium beads for three 1-min
cycles at 5000 rpm. The samples were incubated on ice for 5 min
between each cycle of bead-beating. The supernatant containing
soluble cytosolic proteins was recovered after centrifugation at
15000g for 15 min to remove cell debris. Proteins were denatured
and reduced by addition of guanidine hydrochloride (6 M) and
DTT (1 mM), respectively, followed by boiling for 5 min. Prior to
digestion, samples were desalted using a 5000 molecular weight
cutoff “D-salt” gravity column (Pierce, Rockford, IL) equilibrated
in 100 mM ammonium bicarbonate (pH 8.4). Proteins were
enzymatically digested at an enzyme/protein ratio of 1:50 (w/w)
using sequencing grade modified trypsin (Promega, Madison, WI)
at 37 °C for 16 h.

Capillary LC Coupled with ESI-MS. HPLC-grade water and
acetonitrile were purchased from Aldrich (Milwaukee, WI). Fused-
silica capillary columns (30-60 cm, 150-µm i.d. × 360-µm o.d.,
Polymicro Technologies, Phoenix, AZ) packed with 5-µm C18
particles were manufactured in-house as described previously.12

Briefly, capillary RPLC was performed using an ISCO LC system
(model 100DM, ISCO, Lincoln, NE). The mobile phases for
gradient elution were (A) acetic acid/TFA/water (0.2:0.05:100 v/v)
and (B) TFA/acetonitrile/water (0.1:90:10, v/v). The mobile
phases, delivered at 5000 psi using two ISCO pumps, were mixed
in a stainless steel mixer (∼2.8 mL) with a magnetic stirrer before
flow-splitting and entering the separation capillary. In this way, a
nonlinear (exponential) gradient is generated, as has been
previously described,46 providing an analysis time of ∼180 min.
Fused-silica capillary flow splitters (30-µm i.d. with various lengths)
were used to manipulate the gradient speed. Capillary RPLC was
coupled on-line with MS through an ESI interface (a stainless steel
union was used to connect an ESI emitter and the capillary
separation column).

The peptide database has been generated by using several
mass spectrometers, including 3.5-, 7-, and 11.4-T FTICR instru-
ments (described in detail previously47 and references therein),

as well as several ion-trap mass spectrometers (LCQ, LCQ Duo,
LCQ DecaXP; ThermoFinnigan, San Jose, CA). The ANN software
used was NeuroWindows version 4.5 (Ward Systems Group, USA)
and utilized a standard back-propagation algorithm on a Pentium
1.5 GHz personal computer.

RESULTS AND DISCUSSION
Brief Description of the Artificial Neural Network. In

comparison with classical statistical methods, ANN-based ap-
proaches have advantages that include a capacity to self-learn and
to model complex data without the need for a detailed understand-
ing of the underlying phenomena.

A feed-forward neural network model, sometimes called a back-
propagation neural network due to its most common learning
algorithm, is used in this work. It is composed of a large number
of neurons, nodes, or processing elements organized into a
sequence of layers.48,49 The architectures of these ANN models
contain at least two layers, an input layer with one node for each
variable in a data vector and an output layer consisting of one
node for each variable to be investigated. Additionally, one or more
hidden layers can be added between the input and output layers
if the complexity of the data so require. Nodes in any layer can
be fully or partially connected to nodes of a succeeding layer, as
shown in Figure 1, where each hidden or output node receives
signals in parallel. The input signal to a node is modulated by a
weight (w) along each link. The net input to a node is thus a
function of all signals to a node and all of its associated weights.
For example, the net input for a node j is given by

where i represents nodes in the previous layer, wji is the weight
associated with the connection from node i to node j, and Oi is
the output of node i.

The final output signal of a node is usually confined to a
specified interval, say between 0 and 1. We are forced, then, to
make the net input to the neuron undergo an additional transfor-
mation through or using a transfer function. There are several
transfer functions available, satisfying a requirement of continuity,
set by the back-propagation algorithm. The most popular one is
the sigmoid function given by

In essence, these equations applied to nodes in the hidden
and output layers allow these ANNs to perform multivariate
nonlinear regression using a sigmoidal function, and because of
the parallel processing of nodes within each layer, these ANNs
have the ability to learn multivariate nonlinear functions.

The process of adapting the weights to an optimum set of
values is called training the neural network. To train the neural
network, there exist several training algorithms, of which the back-
propagation algorithm is one.50
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Normalization of Peptide Elution Times Using a Genetic
Algorithm. An “intelligent” algorithm for the normalization of
retention time was desired to compare a large number of LC/MS
experiments, because of the variability associated with constant
high-pressure capillary LC separations using syringe pumps.11,51,52

Small changes in split ratio, column lengths, column packings,
void volumes, etc. unavoidably lead to some retention time
variability. Thus, all peptide retention times were normalized to
the range [0, 1] by using a genetic algorithm (GA).

A GA is an algorithm based on evolutionary computation and
survival of the fittest and is often applied to optimization problems,
such as optimizing the free variables in a hypothesis function.53,54

Solutions to problems are coded as individuals, which evolve
through generations. An individual in our coding is a vector of
real values (line functions) of slopes and intercepts for each
experiment being normalized. The fittest individuals in each
generation breed the next generation through crossover and
mutation operators, recombining best “genes.” The “genes” in the
offspring are then perturbed in the next step by a small value
and a small probability. This iterative process causes the best
solution, the fittest individuals, to be incrementally refined.

The GA was applied to 51 150 (9121 different) peptides
identified from 687 LC/MS/MS analyses to establish a common
timeline so that the same peptides’ variances of normalized elution
times (NETs) across the different separations were minimized.
The GA was set up to optimize the two linear equation variables,
k and m in y ) kx + m, for each experiment (Figure 2 shows
coding of the individuals): one variable (m) normalized the start
of the recording time and the other (k) normalized the gradient
speed. The GA optimized these two variables for each separation
to reduce the variance function of specific peptides, i.e., the

regressed elution times for each separation. This optimization
scheme of multiple linear regressions normalized the peptide
elution times into a common [0, 1] range.

The normalization of elution times to a 0-1 range is based on
six peptides identified frequently in both D. radiodurans and S.
oneidensis. The peptides were the following: (1) YNQLLR,(2)
IVSLAPEVL, (3) VPLHTLR, (4) TFAIPHGGGGPGMGPIGVK, (5)
ELATAK, and (6) PGVVIGK. All experiments were first normal-
ized with the GA to minimize elution time variances for the same
peptides across the set of all peptides. With all peptide elution
times on the same scale, the means for the peptide elution times
were regressed/fitted to a 0.1-0.9 scale of normalized elution
times. The 0.1-0.9 range was chosen for the shortest and longest
retained peptides, respectively, rather than 0-1, to accommodate
for actual peptides eluting before the mean of 0.1 and later than
the mean of 0.9 and to accommodate for peptides not yet identified
that may elute earlier or later than in the set of identified peptides.
These six identified peptides with their normalized elution times
served as calibrant peptides in our GA when normalizing the D.
radiodurans and S. oneidensis datasets. However, individual
experiments are not regressed against the elution times for these
peptides; rather, the means for these six peptides in the whole
species database were loosely regressed against the calibrant
peptide values while the GA was also minimized for the NET
variance of all peptides in the database for that species.

The average variance of NETs for the peptides identified in
more than one experiment is 0.000 276 (standard deviation
0.016 615), or the average normalized elution time deviates from
its mean by 1%. In future studies, a set of standard peptides will
be selected that elute at the beginning, the middle, and the end
of the chromatogram to further improve the normalization of
retention times.

(50) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning internal representa-
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Figure 2. Recombination of two parents’ genes into a new offspring
in a genetic algorithm.

Figure 1. Typical three-layer neural network showing the flow of signals from left to right.
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The Use of Artificial Neural Networks for Peptide Elution
Time Prediction. The ANN training set consisted of 6958
confidently identified D. radiodurans peptides measured by the
RPLC/ESI-MS/MS and further verified with high-mass measure-
ment accuracy using RPLC/ESI-FTICR-MS to exist in the D.
radiodurans polypeptide mixture.8,15 Each peptide was coded as a
20-dimensional vector consisting of the normalized number of each
of the 20 amino acid residues making up the peptides. Each
residue count was normalized to a fraction of the maximum count
of that residue in any peptide in the D. radiodurans database.
These peptide code vectors were repeatedly input into the ANN
by the back-propagation algorithm to reduce output error. The
output error is the squared difference between a target value of
the ANN and the predicted value. In this case, the target values
were the known NETs of the peptides. The ANN thus learned
the relationship between the coded peptide vectors and their
measured NETs.

The hidden layer(s) configuration for the ANN was empirically
determined by using a cross-validation data set during training.
In general, a hidden layer with too few nodes may not sufficiently
model the data. A hidden layer with too many nodes may overfit
the data in the training set and not provide an effective predictive
capability for new data. The ANN was trained with 97% of the DR
peptides and cross-validated with the remaining data. Typically,
the cross-validation data sets are used to stop the training when
the error for the data set ceases to decrease. Going beyond this
point suggests that the ANN “learns” from noise in the training
set that is not present in the cross-validation set. Our experience
in training ANNs with peptide elution data was that the ANN could
not be over-trained. Both the errors on the training and the cross-
validation data sets rapidly converged to minimum values. A small
improvement was realized by using a two-node hidden layer
instead of no hidden layers. Increasing to three hidden nodes
made an even smaller improvement. Table 1 shows error rates
as a function of the number of hidden layer nodes in seven training
sessions. The hidden layer could be increased to a large number
of nodes without the back-propagation algorithm being able to
reduce the errors or being able to overfit the data. We used a
hidden layer with two nodes for the presented work, since it
reduced the error to a near optimal level without potentially
sacrificing generality. The training was stopped at 1000 epochs,
because the errors appeared to have converged at different
learning rates ranging from 0.001 to 0.1. The final ANN model
with 20 input, 2 hidden, and 1 output nodes (20-2-1) is depicted
in Figure 3.

Table 2 summarizes the calculated ANN weights of amino acid
residues after training with the D. radiodurans peptides. From

the weights, we see that leucine is the amino acid that most affects
peptide retention times. In comparison with previous work, only
Browne et al.21 measured Leu as the amino acid residue having
the highest retention coefficient. Generally, our results are in good
agreement with those of Guo et al.22 (same positive and negative
sign as well as a similar ordering of amino acid residue depen-
dence upon retention time). The similarity of the chromatographic
conditions, C18 columns, TFA/water/acetonitrile-based gradient
elution are the obvious reasons for the similarities.

The ANN model was evaluated using peptides identified from
the microorganism S. oneidensis using RPLC/ESI-ion trap MS/
MS. The average error for predicting S. oneidensis NETs for 7080
peptides from 157 analyses was 0.047983 or ∼4.8%. Figure 4a
shows a plot of the predicted NETs for 7080 S. oneidensis peptides
identified in 157 different separations. These results should be
considered worst case because of the uncertainly in peptide
identifications; S. oneidensis peptides, unlike the D. radiodurans
peptides in the training set, were not validated using accurate mass
measurements. Furthermore, the data in Figure 4a suggests the
extremes in errors for LC elution predictions, but does not clearly

Table 1. Mean Square Errors (MSEs) as a Function of
the Number of Hidden Layer Nodes in Seven Training
Sessions

hidden layer nodes training data MSE cross-validation MSE

0 0.01 0.007 2
2 0.009 45 0.007 02
3 0.009 2 0.006 88
4 0.009 02 0.006 95
5 0.008 84 0.006 84

15 0.008 44 0.006 85
30 0.008 7 0.006 9

Figure 3. The 20-2-1 neural network architecture used in this
study.

Table 2. Artificial Neural Network Weights of Amino
Acid Residues; Comparison with Previous Retention
Coefficients (RC) for Amino Acid Residues

RC

amino acid
ANN

weight
Meek
et al.20

Casa
et al.30

Guo
et al.22

Browne
et al.21

leucine 6.12 11 10.47 8.1 20
phenylalanine 3.37 13.4 16.31 8.1 19.2
isoleucine 2.37 8.5 7.76 7.4 6.6
tryptophan 2.27 17.1 18.65 8.8 16.3
methionine 1.63 5.4 8.31 5.5 5.6
valine 1.63 5.9 6.42 5 3.5
tyrosine 0.72 7.4 7.37 4.5 5.6
alanine 0.71 1.1 -0.67 2 7.3
glutamate 0.56 0.7 0.08 1.1 -7.1
proline 0.48 4.4 2.19 2 5.1
cysteine 0.32 7.1 N.I. 2.6 -9.2
aspartate 0.18 -1.6 0.77 0.2 -2.9
threonine 0.18 -1.7 4.21 0.6 0.8
glycine -0.21 -0.2 -0.25 -0.2 -1.2
arginine -0.24 -0.4 -0.01 -0.6 -3.6
asparagine -0.29 -4.2 N.I. -0.6 -5.7
glutamine -0.3 -2.9 N.I. 0 -0.3
serine -0.35 -3.2 -2.18 -0.2 -4.1
lysine -0.55 -1.9 -3.2 -2.1 -3.7
histidine -0.59 -0.7 -2.99 -2.1 -2.1
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show the distribution of errors around the mean. The plot also
includes errors due to variations between separations, which are
not fully eliminated in the normalization process (and would
benefit from the use of elution time calibrants).

A significant number of S. oneidensis peptides were identified
one or only a few times across all 157 experiments, suggesting
that they may be misidentifications. This is supported by the
observation that the average prediction error decreases rapidly
when the model is tested with peptides required to occur in an
increasing number of experiments. A more rigorous error
measurement from S. oneidensis peptides from the same number
of experiments and each peptide occurring at least 20, 40, or 60
times to reduce spurious misidentifications yielded an average
error of 3.86, 3.67, and 3.66%, respectively, (see Figure 4b-d). It
can be seen that the peptides with poor correlation with our model
(i.e., highly dispersed in the plots) are eliminated when only the
peptides that occurred at least 60 times were selected, again
suggesting that infrequently seen peptides are possibly mis-
identified. Furthermore, our preliminary LC-FTICR experiments
of the S. oneidensis imply that peptides with multiple ion-trap

identifications are probably correct based on accurate mass
measurements. Thus, as the probability of correct identifications
is increased, a better correspondence with predicted elution times
is observed.

Figure 5 shows the error distribution of these 1270 S.
oneidensis peptides that have been identified at least 20 times. This
curve is assumed to approach the true distribution of the
prediction model’s performance for correctly identified peptides.
For this peptide set, 50% are predicted within (2.97% of the
measured NETs, and more than 95% are predicted within (10%
of the measured NETs.

One of the major advantages of our model in relation to
previous ones is that it provides more accurate prediction for
longer peptides. As can been seen from Table 3, the average error
is very low for peptides up to 20-mer size; the error then increases
just slightly for longer peptides.

The very fact that not all peptides can be correctly identified
by either accurate mass measurement or MS/MS experiments
has prompted this research into utilizing elution time as an
additional metric for identifying peptides. The use of peptide

Figure 4. Measured vs predicted normalized elution times among 42 378 S. oneidensis peptides from 157 experiments which have been
identified at least (a) 3 times (7080 peptides), (b) 20 times (1270 peptides), (c) 40 times (536 peptides), and (d) 60 times (259 peptides).
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elution prediction will be particularly interesting for the identifica-
tion of isobaric peptides by LC-FTICR. As can be seen from
Figure 6, it was possible to distinguish between the isobaric D.
radiodurans peptides LPNHIQVDDLRQLLDV and VAINDTD-
NHTLAHLLK as a result of their significantly different elution
times, accurately predicted with our model. Although these two
peptides have the same molecular formula, interestingly, they have
different charges. Furthermore, as shown from Table 4, several
isobaric peptides (undistinguishable even with 1 ppm mass
accuracy) have different retention times and were identified with
our model. Moreover, it is also possible to distinguish isomeric
peptides, which have different Ile/Leu ratios (i.e., IVIEIK and
VILLEK) due to the different ANN weights assigned to these
amino acid residues. Some of the peptides, of course, will have
very similar retention times (i.e., the isobar peptides ANAAINS-
GAFK and IIAAGANVVR have the same NET ) 0.26, data not
shown). This approach will be even more useful for proteomes of
higher complexity, in which the number of possible peptides is
greatly increased. For example, in a typical 7 ppm “window”
between 1605.851 and 1605.863 Da, the human proteome codes

for 12 tryptic peptides, but three peptides (QTFEAAILTQLHPR,
TLHSLTQWNGLINK, and LLFLVGTASNPHEAR) have masses
of 1605.862 64 Da and are indistinguishable by mass. Importantly,
however, these peptides are predicted to have different predicted
LC retention times.

It must be pointed out here that this model applies for the
present set of experimental conditions. In the case of separations
using different stationary phases, mobile phases, temperatures,
etc., the present system would have to be “recalibrated” or
properly “mapped” onto the new set of conditions, and perhaps a
new training data set would need to be developed for the
generation of new ANN weights.

Furthermore, the model described takes into account only the
peptides’ amino acid composition, not their sequence. Isomeric
peptides (same amino acids in a different order) are predicted to
elute at the same time, although it has been shown that such
peptides are often separated in LC. Moreover, sequence-dependent
effects, such as conformational and nearest-neighbor effects, may
be additional factors for deviations from predicted retention times.
Indeed, recently, Wimley et al.55 showed that occlusion effects
may occur in the case of guest (X) side chains in the host-guest
pentapeptides ACWL-X-LL that may lead in changes in the overall
hydrophobicity of the peptide. Another sequence-dependent effect
that leads to “anomalous” retention times in liquid chromatogra-
phy is due to conformational differences (i.e., helical vs not helical
peptides and amphipathic helical vs nonamphipathic helical).56-60

(55) Wimely, W. C.; Creamer, T. P.; White, S. H. Biochemistry 1996, 35, 5109-
5124.

(56) Houghten, R. A.; Degraw, S. T. J. Chromatogr. 1987, 386, 223-228.
(57) Büttner, K.; Pinilla, C.; Appel J. R.; Houghten, R. A. J. Chromatogr. 1992,

625, 191-198.
(58) Sereda, T. J.; Mant, C. T.; Sönnichsen, F. D.; Hodges, R. S. J. Chromatogr.

1994, 676, 139-153.

Table 3. Average Mean Square Error (MSE) of the
Peptide Elution Time Prediction in Relation to the
Peptide Lengtha

peptide length peptides with that length av MSE

5-10 353 0.001 73
11-20 618 0.003 06
21-30 258 0.005 60
31-40 36 0.006 13
41- 5 0.007 66

a These are 1270 S. oneidensis peptides identified at least 20 times
(same peptides as in Figure 4b).

Figure 5. Prediction error distribution for 1270 S. oneidensis peptides that were tentatively identified at least 20 times using the program
SEQUEST. The graph shows the fraction of peptides vs the NET error levels. For example, the graph shows that 50% of the peptides have
<3% prediction error, and more than 95% have <10% error.
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In this regard, Zhou et al.61 showed that peptides with the same
amino acid composition have different R-helical contents. The

more amphipathic the peptide, the higher the helicity. Amphip-
athic R-helical peptide conformations have been shown to have

(59) Purcell, A. W.; Aguilar, M. I.; Wettenhall, R. E. H.; Hearn, M. T. W. Pept.
Res. 1995, 8, 160-170.

(60) Sereda, T. J.; Mant, C. T.; Hodges, R. S. J. Chromatogr., A 1995, 695, 205-
221.

Figure 6. Example of the more confident identification of two isobaric peptides by using peptide predicted elution times as an additional
metric. The isobaric peptides LPNHIQVDDLRQLLDV and VAINDTDNHTLAHLLK have a different normalized elution time (NET), which has
allowed their differentiation. The figure shows the total ion current (TIC), the corresponding extracted ion currents (EIC), and the mass spectra
of these peptides.
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increased retention times relative to their elution times calculated
using retention coefficients.56-61 This is because amphipathic
peptides interact with the hydrophobic phase in such a way that
the hydrophobic part of the structure strongly interacts with the
reversed stationary phase while the polar groups remain in contact
with the hydrophilic mobile phase.60-62 Until now, it has not been
investigated if in practice peptides obtained from tryptic digestions
yield amphipathic R helices or not. Finally, it has been recently
shown that even very small isomeric peptides may elute in
different retention times, implying that the peptide structure might
not be the only parameter governing their LC retention time.63

For example, in a 28-min LC run, Gly-Leu and Leu-Gly were eluted
with a 3.5-min difference.63

Clearly, the development of more sophisticated ANNs incor-
porating selected sequence features offer the likelihood of further
improvements in predictions, including the ability to distinguish
sequence variations. The problem is that larger experimental
datasets relative to different peptide retention times should be
available to include some aspects of sequence information in the
ANN. Finally, our initial model has an inherent weakness relative
to the use of tryptic peptides for its training. Thus, the peptides
used in this study include Arg and Lys only once except when
missed cleavages occur. Because of their basic character, these
amino acids change the pKa/apparent charge of these peptides
and, consequently, their retention times. As a result, the values
given for Arg and Lys might not apply for nontryptic peptides
having additional Arg or Lys residues in their structure. While

this should not be a problem in the case of ideal trypsin
proteolysis, such missed cleavages are commonly observed in
global proteomic studies. In future work, the ANN will be trained
to more correctly predict retention times for peptides containing
more than one Lys or Arg residue.

CONCLUSIONS
Artificial neural networks have been developed and demon-

strated for the prediction of tryptic peptide elution times. An ANN
has been trained with the experimental results derived from the
proteome of the microorganism D. radiodurans and was then used
for the successful elution time prediction for tryptic peptides from
S. oneidensis. The use of different species for the training and
testing of the ANN demonstrate the unbiased nature of this
method. Despite the simplicity of our initial model (only the amino
acid residue counts are taken under consideration), the average
accuracy achieved was ∼3%.

The capability for elution time prediction of peptides adds
another dimension of information for proteomic efforts, because
it either allows new peptide identifications to be made or increases
the confidence of the peptide identifications. Such capabilities will
be particularly useful in isobaric peptide identifications in conjunc-
tion with accurate mass information. Future development of this
method will aim to increase the accuracy of our ANN model by
including more information related to amino acid sequence
(particularly factors that influence secondary structure) and is
expected to improve predictions and provide new capabilities (e.g.,
to predict the retention time of isomeric amino acids). We also
aim to improve the normalization process by using a set of
(calibrant) standard peptides in each run and by further increasing
both the size and quality (i.e., confidence of identification for the
training set). Furthermore, we plan to explore the use of ANNs

(61) Zhou, N. E.; Mant, C. T.; Hodges, R. S. Pept. Res. 1990, 3, 8-20.
(62) Wieprecht, T.; Rothemund, S.; Bienert, M.; Krause, E. J. Chromatogr., A

2001, 912, 1-12.
(63) Petritis, K.; Brussaux, S.; Guenu, S.; Elfakir, C.; Dreux, M. J. Chromatogr.,

A 2002, 957, 173-185.

Table 4. Actual and Predicted Normalized Elution Time (NET) Values of Several Isobaric Peptides from Both
Microorganisms, D. radiodurans (D.R.) and S. oneidensis (S.O.)

NET
microorganism peptide MW predicted actual

Abs.
error

D.R. GVNIR 556.3285 0.4186 0.4164 0.00215
IAQAR 556.3285 0.1529 0.1349 0.01796

S.O. IAGLLR 640.4271 0.3250 0.3351 0.01016
VIAAIR 640.4271 0.2710 0.2589 0.01217

S.O. AAIEAAK 671.3853 0.1318 0.1474 0.01568
DALLNK 671.3853 0.2256 0.2390 0.01334

S.O. IVIEIK 712.4734 0.3230 0.3243 0.00123
VILLEK 712.4734 0.3332 0.3311 0.00214

D.R. DKETLPR 856.4607 0.4506 0.4249 0.02570
IAEQIER 856.4607 0.2032 0.2013 0.00191

D.R. ERAQALLR 954.5563 0.4962 0.4630 0.03317
RVGQDLIR 954.5563 0.2702 0.2655 0.00473

S.O. DLSVEELR 958.4971 0.3134 0.3376 0.02420
EAVDGDKVK 958.4971 0.1447 0.1610 0.01627

S.O. SGNEFNVGSLVFR 1423.7090 0.4668 0.4754 0.00852
YGFDISRPASNAK 1423.7090 0.3329 0.3323 0.00058

D.R LPNHIQVDDLRQLLDV 1886.0214 0.3330 0.3322 0.00077
VAINDLTDNHTLAHLLK 1886.0214 0.5206 0.5213 0.00073

S.O. AIPQSVEGQSIPSLAPMLER 2122.1140 0.4805 0.4601 0.02048
PEAAVMIQADKDTTHGLVVK 2122.1140 0.4173 0.4486 0.03131

D.R. AITVLSALSGGILMAQTPAWQIISPPELSVMAGAGIGALAG 3931.1155 0.5481 0.5201 0.02797
SSPLFSTQLALALAVRLCLLTPAEALSACTVNAAYALGL 3931.1155 0.4611 0.4544 0.00669
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to predict the elution time of peptides with posttranslational
modifications. Finally, the ANN approach will be applied to the
elution time prediction of peptides separated by ion-exchange
chromatography.
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