Complex signals with single-orthant spectra as boundary distributions of multidimensional analytic functions

by

Stefan L. Hahn*

Actually in print: Bulletin of the Polish Academy of Science, Technical Sciences, No.2, 2003

Warsaw, August 1999

* Institute of Radioelectronics, Nowowiejska 15/19, 00-665 Warsaw, tel./fax: (4822) 8255248
e-mail: hahn@ire.pw.edu.pl
Complex signals with single-orthant spectra as boundary distributions
of multidimensional analytic functions
by Stefan L. Hahn

Abstract
Starting with the Cauchy integral representation of a multidimensional analytic functions it was shown that complex signals with single-orthant spectra are boundary distributions of multidimensional analytic functions.

Multi-dimensional analytic functions
Let \(C \) be a complex Cartesian plane. The Cartesian product
\[
C^n = C \times C \times \ldots \times C \quad \text{(n-times)}
\]
defines the n-dimensional complex space. Each point of this space is defined by the values of \(n \) complex coordinates \(z = (z_1, z_2, \ldots, z_n) \); \(z_k = x_k + jy_k \). A complex-valued function \(f(z) \) defined on the open set \(D \subseteq C^n \) is analytic at the \(z_0 \in D \) if in the neighborhood of \(z_0 \) can be expanded into the power series, that is,
\[
f(z) = \sum_{a_1, \ldots, a_n = 0}^{\infty} f_{a_1, \ldots, a_n} (z_0) (z_1 - z_{01})^{a_1} (z_2 - z_{02})^{a_2} \cdots (z_n - z_{0n})^{a_n} \quad \text{(2)}
\]

The n-dimensional Cauchy integral
An n-dimensional function analytic in the region \(D = D_1 \times D_2 \times \ldots \times D_n \) is represented by the n-dimensional Cauchy integral
\[
f(z) = \frac{1}{(2\pi)^n} \int_{\partial D_1} \int_{\partial D_2} \ldots \int_{\partial D_n} \frac{f(\zeta_1, \ldots, \zeta_n)}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)} d\zeta_1 \ldots d\zeta_n \quad ; \quad z \in D \quad \text{(3)}
\]
where \(\partial D_1, \ldots, \partial D_n \) are closed contours of integration in \(D_1, \ldots, D_n \). Starting with this integral representation let us show, that n-dimensional complex signals with single orthant spectra [Hahn, 1992] represent a boundary distribution of analytic functions. We start with the one-dimensional case.

The one-dimensional analytic signal as boundary distribution of a one-dimensional analytic function.
The Cauchy integral representation of a one-dimensional analytic function \(\psi(z) \), \(z = t + j\tau \), (we change the notation \(z = x + jy \) to the more common notation for time signals) is
\[
\psi(z) = \frac{1}{2\pi j} \int_{\zeta - z} \psi(\zeta) d\zeta \quad \text{(4)}
\]
Consider a function analytic inside the region D located in the upper half complex plane and bounded by a closed curve C, as shown in Fig.1. The curve C is divided into three parts: A large half-circle C_R of radius R, a line C_t parallel to the real axis shifted by ϵ and a small half-circle C_ϵ of radius ϵ centered at the point $z_0 = t_0 + j\epsilon$. Using anti-clock direction of integration, the Cauchy integral (4) takes the form

$$\psi(z_0) = \frac{1}{2\pi j} \left\{ \int_{t_0}^{t_0+\epsilon} \frac{\psi(\zeta)}{\zeta - z_0} \, d\zeta + \int_{t_0-\epsilon}^{t_0} \frac{\psi(\zeta)}{\zeta - z_0} \, d\zeta + \int_{t_0-\epsilon}^{t_0} \frac{\psi(\zeta)}{\zeta - z_0} \, d\zeta \right\}; \quad z_0 = t_0 + j\epsilon; \quad (5)$$

The analytic signal $\psi(t)$ (Gabor, 1946) is defined using the limit of this integral with $\epsilon \to 0$ and $R \to \infty$ that is $z_0 \to t_0 + j0^+$. The notation 0^+ indicates that the imaginary variable $j\tau = j\epsilon$ reaches zero from the upper side. For analytic functions the integral along C_R vanishes for $R \to \infty$. The limit of the integral along the small half-circle equals $0.5\psi(t_0, 0^+)$, since within the infinitesimally small circle around t_0 the continuous analytic function has a constant value $\psi(t_0, 0^+)$ and the integral $\int_{t_0-\epsilon}^{t_0} \frac{dz}{z - z_0} = j\pi$. Therefore, changing the notation $t_0 \to t$ and $\zeta \to \eta$ we get the equation

$$\frac{1}{2} \psi(t + j0^+) = u(t, 0^+) + jv(t, 0^+) = \frac{1}{2\pi j} P \int_{-\infty}^{\infty} \frac{\psi(\eta)}{\eta - t} \, d\eta$$

where P denotes the Cauchy Principal Value of the integral (see, Eq.(5)). Equating the real and imaginary parts of this equation yields the well known relations between u and v in the form of a pair of Hilbert transforms

$$v(t) = H[u(x)] = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{u(\eta)}{\eta - x} \, d\eta$$

$$u(t) = H^1[v(x)] = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{v(\eta)}{\eta - x} \, d\eta$$

Fig.1 The contour of integration along the closed contour $C = C_R + C_t + C_\epsilon$ of the complex plane $(t, j\tau)$.
We have shown, that the analytic signal is given by the boundary distribution of the analytic function along the 0\textperthousand of the real axis of the complex plane. The Fourier spectrum of this signal is one-sided at the positive frequencies. However, if we integrate along a closed path in the lower half-plane \((t, j\tau)\), we get the conjugate analytic signal with the Fourier spectrum one-sided at negative frequencies. It represents the boundary distribution of the analytic function along the 0\textperthousand of the real axis. Let us mention, that the choice of the distribution along the real axis is a matter of convention. We could derive an analytic signal given by the boundary distribution along the imaginary axis.

Complex signals with single-quadrant spectra as boundary distributions of two-dimensional analytic functions

Let us extend the above presented evidence, that 1-D signals are boundary distributions of analytic functions, for 2-D signals with single-quadrant spectra. A complex signal with a single-quadrant spectrum in the first quadrant is given by the formula (Hahn, 1992)

\[
\psi(x_1, x_2) = u(x_1, x_2) - v(x_1, x_2) + j[v_1(x_1, x_2) + v_2(x_1, x_2)]
\]

where \(u(x_1, x_2)\) is a real function, \(v(x_1, x_2)\) is the total Hilbert transform of \(u(x_1, x_2)\) of the form

\[
v(x_1, x_2) = H[u(x_1, x_2)] = \frac{1}{\pi} \text{P} \int_{-\infty}^{\infty} \frac{u(\eta_1, \eta_2)}{(\eta_1 - x_1)(\eta_2 - x_2)} d\eta_1 d\eta_2
\]

and \(v_1(x_1, x_2)\) or \(v_2(x_1, x_2)\) are partial Hilbert transforms of \(u(x_1, x_2)\) in respect to \(x_1\) or \(x_2\), that is,

\[
v_1(x_1, x_2) = H_1[u(x_1, x_2)] = -\frac{1}{\pi} \text{P} \int_{-\infty}^{\infty} \frac{u(\eta_1, x_2)}{\eta_1 - x_1} d\eta_1
\]

\[
v_2(x_1, x_2) = H_2[u(x_1, x_2)] = -\frac{1}{\pi} \text{P} \int_{-\infty}^{\infty} \frac{u(x_1, \eta_2)}{\eta_2 - x_2} d\eta_2
\]

Similarly to the 1-D case we start the derivation with the 2-D Cauchy integral

\[
\psi(z_1, z_2) = \frac{1}{(2\pi)^2} \oint_{\partial D_1} \oint_{\partial D_2} \frac{\psi(\zeta_1, \zeta_2)}{(\zeta_1 - z_1)(\zeta_2 - z_2)} d\zeta_1 d\zeta_2
\]

where \(\partial D_1\) and \(\partial D_2\) are closed contours of integration in the complex planes \(D_1\) and \(D_12\) with integration with respect to \(\zeta_1 = \eta_1 + j\gamma_1\) or \(\zeta_2 = \eta_2 + j\gamma_2\) respectively. Both contours have the same shape, as displayed in Fig.1. The integration along the contour \(\partial D_1\) yields in the limit \(R_1 \to \infty, \varepsilon_1 \to 0\), (see the 1-D case) the following integral

\[
\psi(x_1, z_2) = \frac{1}{(2\pi)^2} \oint_{\partial D_2} \left\{ \frac{1}{(2\pi)j} \text{P} \int_{-\infty}^{\infty} \frac{\psi(\eta_1, \zeta_2)}{\eta_1 - x_1} d\eta_1 + \frac{1}{(2\pi)^2} \int_{\partial D_1} \frac{\psi(\zeta_1, \zeta_2)}{\zeta_1 - z_1} d\zeta_1 \right\} d\zeta_2
\]
which can be written in the form (see Eq.(11))

$$\psi(x_1, z_2) = \frac{1}{2\pi j} \oint_{\partial D_2} \left\{ \frac{-1}{2} H_1(\psi(x_1, \xi_2)) + \frac{1}{2} \psi(x_1, \xi_2) \right\} \frac{d\xi_2}{\xi_2 - z_2} \tag{15}$$

Next integration along the contour \(\partial D_2 \) yields

$$\psi(x_2, x_2) = \frac{1}{4\pi} \text{P} \int_{-\infty}^{\infty} \frac{H_1(\psi(x_1, \eta_2))}{\eta_2 - x_2} d\eta_2 + \frac{j}{4} H_1(\psi(x_1, x_2)) + \frac{1}{4\pi} \text{P} \int_{-\infty}^{\infty} \frac{\psi(x, \eta_2)}{\eta_2 - x_2} d\eta_2 + \frac{1}{4} \psi(x_1, x_2) \tag{16}$$

Introducing the operators of Hilbert transforms \(H, H_1 \) and \(H_2 \) (see Eqs.(10), (11) and (12), and the relation \(H = H_2[H_1] \) we get using the multiplication of both sides by \(4/3 \) the following relation

$$\psi(x_1, x_2) = \frac{1}{3} \left[H(\psi(x_1, x_2)) + jH_1(\psi(x_1, x_2)) + jH_2(\psi(x_1, x_2)) \right] \tag{17}$$

We ommited here the notation \(\psi(x_1, 0+, x_2, 0+) \). The insertion in this equation the complex signal given by the Eq.(9) confirms the equality of (9) and (17). Concluding, we presented the evidence, that the complex signal with the with single-quadrant spectrum in the first quadrant is a boundary distribution of a 2-D analytic function. The derivation for the other three signals with spectra in the second, third and fourth quadrants is the same using only a change of signs. The extension of the derivation for n-dimensional signals is straightforward and do not change the method of derivation. In our paper in 1992 (Hahn, 1992) we used the name “complex signals with single orthant spectra” since at that time failed the evidence of analyticity in the formal sense. The presented derivation enables the use of the name “Multidimensional analytic signals with single orthant spectra”.

References
Leja F., Funkje zespolyne (Complex functions) , Biblioteka Matematyczna, tom 29, PWN, Warsaw, 1967