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Abstract � This paper presents the notion of the 2n-D Wigner distribution (WD) of  n-D complex signals 

using the notion of complex signals with single orthant spectra. The number of orthants of the n-D signal 

space x = (x1, x2, … , xn  ) and of the corresponding Fourier frequencies space f = (f1, f2, … , fn  )  equals 2
n
. 

However, a real signal u(x) can be reconstructed using the spectrum given in a half Fourier frequencies 

space. In consequence, a real signal can be reconstructed using 2
n-1

 complex signals, one for n = 1, two for n 

= 2, four for n = 3, etc. Since each complex signal �q(x) (q - the label of an orthant) defines a 2n-D WD 

denoted Wq(x, f), we have a single 2-D Wigner-Ville distribution (WVD) for n = 1, a set of two 4-D WD for 

n = 2, a set of four 6-D WD for n = 3, etc. Selected features of these distributions are discused and compared 

with the 2-D case. Using these distributions as weighting functions in averaging in the frequency domain the 

products (2�f1)
k
(2�f2)

l
(2�f3)

m
... we define moments denoted mklm…(x) (functions of x) and in averaging in the 

signal domain the products k l m
1 2 3x x x ... we define moments denoted Mklm…(f)  (functions of f). The 

significance of these moments is explained. Using the signal domain average of the distribution Wq(x, f),  a 

complex correlation function with a single orthant power spectrum is derived. This extends the Wiener-

Khinchine theorem for signals with single orthant power spectra. 

 

1. Introduction 

Nonstationary signals with time-varying spectra such as human speech, sonar and radar echos, various 

signals from transducers in measurements and others cannot be effectively analysed using the classical 

Fourier transform. This was the reason for the introduction of many time-frequency signal representations. 

The best known examples are the short-time Fourier transformation known as the spectrogram, the Wigner-

Ville distribution (WVD) or the ambiguity function. As well, time-scale representations especially using 

wavelet transforms have been widely used. Several excellent research and review papers describing the 

theory and applications of time-frequency analysis has been printed recently, for example [1], [2], [3]. The 

time-frequency representations are in most cases limited to the 1-D signals, usually time signals. However, 

in many applications there is a need to analyse 2-D signals, for example images or 3-D signals (a sequence 

of images). As in the 1-D case, the n-dimensional Fourier spectral analysis translates the information about 

the signal from the signal space x = (x1, x2,.., xn) to the Fourier frequencies space f = (f1, f2,.., fn). Since the 

signals in the x space can be nonstationary, for the same reasons for which time-frequency distributions are 

applied, signal space-frequency space distributions can be applied to study the properties of n-D signals. Let 

us introduce the abbreviation x - f distribution. However, this paper is restricted to the x - f distributions 

being the  n-D extension of the Wigner-Ville distribution denoted by  the acronym WD. Wigner has  defined 

a distribution for complex signals in 1932 [4]. In 1948 Ville extended this definition for 1-D complex 
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analytic signals [5]. We found the extension of the definition of the Wigner distribution for 2-D real signals  

in [6]. The presented in this paper extension of the WVD is based on the definition of the multidimensional 

complex signals with single-orthtant spectra presented in [7], [9]. These signals are the generalization of the 

well-known 1-D Gabor's analytic signal. 

2. The definition of n-D complex signals 

In this paper we define the notion of the WD of n-D complex signals. The starting point is the definition of 

the n-D Fourier transform of the n-D real signal u(x), where x=(x1, x2,..., xn) of the form 

    U(f)= 1 1 2 2-j2π( )
1 2 n-

u( )e dx d ...dn nx f x f x f x x
� � �

� � �

�� �� �

� � ��
...x� �    (1) 

where f = (f1, f2,..., fn) defines the n-D Cartesian Fourier frequency space. Let us point out that due to the 

Hermitian symmetry of the spectrum U(f) the signal u(x) can be reconstructed  from the knowledge of the 

spectrum U(f) in a half Fourier frequencies space. For example, the 1-D analytic signal �(t) = u(t) + jv(t), 

where u and v are time signals being a pair of Hilbert transforms, is defined by the one-sided spectrum and 

the real signal can be reconstructed using the generalized Euler's formula 

     u(t)=0.5[� (t)+� *(t)]      (2) 

where * denotes the complex conjugate. For 2-D signals u(x1, x2) the spectrum U(f1, f2) is defined in four 

quadrants (see Fig.1). 
             f2         f3  
              2-nd quadrant   1-st quadrant           f2 
           q = 2         q = 1 
 half-axis f < 0    half-axis f > 0               f1     f1    
        f   4-th quadrant     3-rd quadrant 
  0         q = 4               q = 3 
 
            a) Two-half axis.           b) Four quadrants                             c) Eight  octants 
 
Fig.1. The Fourier spaces: a) 1-D, b) 2-D and c) 3-D. In 3-D the following labeling of octants is applied: q=1 � (f1, 
f2,f3), : q=2� (-f1, f2,f3), : q=3 � (f1,- f2,f3), : q=4 � (-f1,- f2,f3), : q=5 � (f1, f2,-f3), : q=6 � (-f1, f2,-f3), : q=7 � (f1, -f2,-
f3), : q=8 � (-f1, -f2,-f3), 

The inverse Fourier transform of the succesive single-quadrant spectra  defines four complex signals �1(x1, 

x2), �2(x1, x2), �3(x1,x2) and �4(x1, x2). However, due to the  Hermitian symmetry �  and � �  

and the reconstruction formula has the form [7], [8], [9] 

�1 �
�

4

�

3 2�
�

 

    u(x1, x2) = 1 1 3 30.25 � � � �
�� �� � �� �      (3) 

which shows that u(x1, x2)  is uniquely defined by a two-quadrant spectrum (half Fourier frequencies space), 

for example the half-space f1 > 0. Let us denote the signals in (3) by �q, where q = 1 or 3 denotes the label of 

the quadrant No.1 or No.3. Similarly, the spectrum of a 3-D real signal u(x1, x2, x3) is defined in eight octants 
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and the inverse Fourier transform of the single-octants spectra defines four pairs of complex signals 

1 1 2 3 8 1 2 3( ) ( )x ,x ,x x ,x ,x� �
�

� , 2 1 2 3 7 1 2 3( ) ( )x ,x ,x x ,x ,x� �
�

� ,  3 1 2 3 6 1 2 3( ) ( )x ,x ,x x ,x ,x�
�

�� ,  

4 1 2 3 5 1 2 3( ) ( )x ,x ,x x ,x ,x� �
�

�  and the reconstruction formula has the form  [7], [9] 

   u(x1, x2, x3) = 0.125 � �1 1 2 2 3 3 4 4� � � � � � � �
� � �

� � � � � � �
�    (4) 

showing, that the signal can be reconstructed using the knowledge of the spectrum in four octants (half 

space) (the labels q = 1, 2, 3 or 4). This is a general property valid for higher dimensions. However, if the 

function u(x) is separable (is a product of 1-D functions) the signal is defined by the knowledge of a single 

orthant spectrum. Fig.7a (see point 3.1.3) shows the contour lines of  a 2-D separable Gaussian signal 

showing the full symmetry in all four quadrants. In consequence all four complex signals have the same 

energy and contain the same information about the real signal. However, the Fourier spectrum is relative and 

may change with the shift or rotation of the Cartesian coordinate system. Especially, the rotation of the 

coordinate system changes a separable signal into a nonseparable one (except signals with rotational 

symmetry). Therefore, the rotation may cancel the symmetry. An example is shown in Fig.7b displaying the 

contour lines of a nonseparable Gaussian signal. This rotation produced a nonseparable signal. Here the 

information about the real signal is the same in the quadrants 1 and 4 and differ from the information in the 

quadrants 2 and 3. In consequence we have two pairs of conjugate complex signals having different energy. 

3. The definition of the WD of n-D complex signals 

The definition of the Wigner Distribution (WD) of n-D complex signals is a generalization of the definition 

of the WVD of  1-D analytic signals. The WVD of �(t) has the form of the Fourier transform of the 

correlation product 

     � � ( 2) (r t , t / t /� � � � �
�

� � � 2)

�

d�

    (5) 

  Alternatively, the WVD may be defined by the inverse Fourier transformation of the frequency 

domain correlation product  

     g(f, �)=�(f +�/2)��(f - �/2)     (6) 

where �(f) is the one-sided spectrum of �(t). Concluding, the Wigner-Ville time-frequency distribution is 

defined by the Fourier transforms 

   W(t, f)=F[r(t,�)]=   (7) 2( 2) ( 2) dj ft / t / e � �

� � � �
�

� �

��

� ��
   W(t, f)=F-1[g(f, �)]=   (8) 2( 2) ( 2) j tf / f / e ��

� � � �
�

�

��

� ��
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The equations (7) and (8) define exactly the same 2-D function and the choice is a matter of convenience in 

given circumstances. The WD of an n-D complex signal with a single orthant spectrum is defined here by 

the Fourier transform of the correlation product 

     � �, ( ) (q q qr x f � � � �
�

�
� )

�
     (9) 

where � �1 1 2 22 2 n n 2x / ,x / , ,x /� � � �
�
� � � ��� � , � �1 1 2 22 2 n n 2x / ,x / , ,x /� � � �

�

� � � ��� �   and � = 

(�1, �2,  …,�n) is the x domain shift variable. Therefore, the WD is given by the Fourier transform 

Wq(x, f) =   (10) 1 1 2 2j2 ( )
1 2( ) ( ) d d dn nf f f

q q e � � � �
� � � � � � �

� � �
� � ������

� �
�� �� ��

� � � � � �� � � n

)

This is a generalization of Eq.(7). The generalization of Eq.(8) is given by the inverse Fourier transform of 

the correlation product 

     gq(x,  f ) = � �      (11) q q( ) (� �
�

�

�

where �q(f)  is the single orthant spectrum of the complex signal �q(x) We used the 

notation � �1 1 2 22 2 n n 2f / , f / , , f /� � � �
�
� � � ��� � , � �1 1 2 22 2 n n 2f / , f / , , f /� � � �

�
� � � ��� � , where 

� = (�1, �2, …, �n) is the frequency domain  shift variable. Therefore, 

Wq(x,  f )= 1 1 2 2j2 ( )
1 2Γ ( )Γ ( ) d d dn nx x x

q q e � � � �

n� � �
� � �

� ������

� �
�� �� ��

� � � � � �� � � � �   (12) 

Again, (10) and (12) define exactly the same distribution and the choice depends on circumstances. Since 

the half Fourier space has 2n-1 orthants, and each single orthant spectrum defines a different complex signal 

(except the case of separable signals) and we have to define 2
n-1 different distributions. Therefore 2-D 

signals are described by two distributions denoted W1(x1, x2, f1,  f2) and W3(x1, x2, f1,  f2) and 3-D signals by 

four distributions denoted W1(x1, x2, x3, f1, f2, f3), W2(x1, x2, x3, f1, f2, f3), W3(x1, x2, x3, f1, f2, f3), and W4(x1, x2, 

x3, f1, f2, f3), each defined by the integral (10) or (12) by the addition of an appropriate subscript to � or �. 

3.1  Properties of the WVD of 1-D and the WD of 2-D signals.  

The properties of the WVD of 1-D analytic signals are well known and described in many papers and 

handbooks. Extensive bibliography can be found in [1] and [3]. Descriptions for 1-D signals presented 

below serve as a starting point for presenting the features of the WD of 2-D complex signals. 

3.1.1 The distribution W(t, f) of analytic signals is one-sided in the half-plane  f > 0. 

 Let us emphasise that the WVD of  analytic signals is a one-sided function of the frequency f, that is it 

vanishes for f < 0. This is an important property caused by the one-sided spectrum of the analytic signal. 

Especially, due to this property the WVD of analytic signals do not generate the cross terms around the zero 

frequencies (see next part of this paper). Let us illustrate this property with examples. 
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1. The WVD of the harmonic analytic signal � � 0j2πe f tt ��  has the form W(t, f) = �(f – f0). Notice  that this 

is a function of both variables and formally could be written in the form of a product of distributions W(t, f) 

= �(f – f0)�1, where 1 equals one for all t (see Fig.2). However, this notation which shows the time 

dependence will not be used in this paper.  

 
Fig.2. Simulation of the WVD   Fig.3. The WVD of the Cauchy   Fig.4. The WVD of  the Gaussian 
         W(t, f) = �(f – f0),  f0  = 1.            analytic signal.              analytic signal. 

2.  The one-sided WVD of the Cauchy analytic signal  �(t) = (1/�)(a�jt)
-1

.is shown in Fig.3.  

3. Fig.4 shows the one-sided WVD of the Gaussian analytic signal �(t) =  where H 

denotes the Hilbert transform. Formally, it is possible to define the distribution W(t, f) using the conjugate 

kernel . Such a distribution is one-sided in the half-plane f < 0. If needed, 

we shall denote the distribution (7) defined by the kernel (5) by W+(t, f) and by the conjugate kernel by W-

(t, f). This distiction is useful in the description of WD of 2-D separable complex signals. 

2π jHte e� ��
�

2πt� �
�

)

( ) ( 2) ( 2)r t , t / t /� � � � �
� �

� � �

3.1.2 Single-quadrant nature of the cross-section of the WD of 2-D signals 

The WD of a 2-D complex signal is a 4-D function. Since the real signal u(x1, x2) defines a set of two 

complex signals with single-quadrant spectra denoted �1(x1, x2) and  �3(x1, x2)  the Eq.(10) defines a set of 

two four-dimensional Wigner distributions denoted W1(x1, x2, f1, f2) and W3(x1, x2, f1, f2).  Notice, that the 

subscripts 1 and 3 correspond to the quadrants No.1 and No.3 of the f  plane. Let us define cross-sections of 

W1 and W3 for fixed values of the variables x1 = x10 and x2 = x20. The one-sided distributions of Fig.2 to 4 

correspond here to single-quadrant cross-sections W1(x10, x20, f1, f2) and W3(x10, x20, f1, f2). Let us illustrate 

this statement with the following examples: 

1. Consider the real signal u(x1, x2) = cos(2�fax1) cos(2�fbx2). The corresponding complex signal defined by 

the spectrum located in the first quadrant has the form �1(x1, x2) = e . Since the signal is separable, 

there is no need to use the signal �

1 2j2π( a bx f x f�

3. The WD of this signal has the form  W1(x1, x2, f1, f2) = �(f1  - fa)�(f2 - fb) 

for all x. Fig.5 shows the cross-section of this distribution for x1 = x2 = 0. Notice, that this cross-section does 

not depend of the values on the fixed variables x10 and x20. 
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            W(0, 0, f1, f2)   
           f2     
            �(f1 – fa)��(f2 – fb) 

            fb     

 

                  f1 
           fa 

Fig.5. The cross-section of the 4-D WD of the signal u((x1, x2) = cos(2�fax1) cos(2�fbx2). 

2. Consider the separable 2-D Cauchy signal of the form 

   u(x1, x2) = 2 2 2 2 2
1 2

1 a b
π a bx x� �

      (13) 

Fig.6a shows the single-quadrant cross-section of the distribution W1(x1, x2, f1, f2) and Fig.6b the 

corresponding contour lines. The contour lines of the distribution W3(x1, x2, f1, f2) are shown in Fig.6c. The 

examination of the contour lines shows  that the information contained in both cross-sections is the same as 

expected for a separable signal. In Fig.6c we see an mirror image in respect to the line f1 = 0 of the image in 

Fig.6b. 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

f
1

f 2

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

f

f 2

 1
a) W1(0, 0, f1, f2)/         b) Contour lines of a).       c) Contour lines of W2(0, 0, f1, f2). 

Fig.6. The cross-sections of the  4-D WD of a separable Cauchy 2-D signal. W1  has a single-quadrant       
         support in the first quadrant and W2 in the third quadrant/ 

3. Consider the separable 2-D Gaussian signal given by the equation 

u(x1, x2) =
2

2 2 2
1 2

1 exp -0.5 k
2π k

xx
� �� �

�� ��

 �

	
� 


     

Let us introduce the rotation of the coordinates with � � � �1 1 2cos sin' 'x x x� �� � , � � � �2 1 2sin cos' 'x x x� �� � . 

We get 

� � � 2 2
1 2 1 2 1 2

1u exp - a b c
2π

' ' ' ' ' ' �x ,x x x x x� �� � �� �     (14) 

where � �
� �2

2 2 2
2

sin
a 0 5 k cos

k
.

�
�

� �
� �� �

� �
, � �

� �2
2 2 2

2

cos
0 5 k sin

k
�

�b .
� �

� �� �
� �

 and � � � � 2
2

1in cos k
k

� �
� �

�� �
� �

c=s . 

The energy of (14) does not depend on the angle of rotation �.  The spectrum is signal is 

� � � �2 2 2 2
1 2 1 2 1 2U exp - b a cf , f � � � ��� � ��

�
�   ; �1 = 2�f1,  �2 = 2�f2  (15) 
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Fig.7a  shows the contour lines for the separable signal with k = 1.5 and  � = 0 and Fig.7b for a nonseparable 

signal with  � = �/3. In the separable case the spectral information in all four quadrants is the same. In the 

nonseparable case the spectral information in the quadrants No.1 and 4 is different in repect to the quadrants 

No.2 and 3. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

f

f 2

  
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

f

f 2

 1 1
 Fig.7a. Contour lines of the spectrum of a                Fig.7b. Contour lines of the spectrum of a nonseparable 
            separable 2-D Gaussian signal (� = 0).               Gaussian signal (� = �/3). The spectral information 
            The spectral information in all quadrants              is different in the quadrants No.1 and 3  and is equal 
            is the same.     in the quadrants No.1 and 4 and no.2 and 3. 
       

 

 
Fig.8a. The cross-sections of theWD’s correspon-        Fig.8b. The cross-sections of the WD’s correspon- 
            ding to the spectrum of Fig.7a.Upper image       ding to the spectrum of Fig.7b. Upper image 
            W1(0, 0, f1, f2). Bottom: W3(0, 0, f1, f2).        W1(0, 0, f1, f2). Bottom: W3(0, 0, f1, f2).   
            W2 is a mirror image of  W1 in respect to the       W1 and W2 are different. 
            line f2 = 0.     
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Fig.8a shows the cross-sections W1(0, 0, f1, f2) and W3(0, 0, f1, f2) for the separable case with � = 0 (see 

Fig.7a)  Again the W3 is amirror image of W1 in respect to the line f1 = 0. The energy of both distribution is 

the same. Fig.8b shows the above cross-sections for the non-separable case with �  = �/3.  The two cross-

sections of Fig.8b  as expected are different and have different energies. 

3.1.3 Interference ( cross ) terms of the WV distributions of 1-D signals 

The main drawback of the WVD is, that the algorithm is bilinear in nature and produces cross terms. 

Consider a sum of two analytic signals �(t)= �a(t) + �b(t). Let us denote � �a+ a 2t /�� �� � and 

� �a- a 2t /� � �� �  amd respectively �b+ and  �b-. The WVD of this signal is 

  W(t, f)=F b g = a b a b� � � �
� � �

�

�

�
� �e j

   F F     (17) Fa a b b b a a b� � � � � � � �
� �

�

� �

�

� �

�

� �

�
� � �

The first two terms are equal to the WVD of the signals �a and �b  respectively and the last two represent 

the cross terms. Example: Consider the sum of two analytic harmonic signals � � aj2π j2πe e bf tt � �
f t

� . The 

WVD of this signal is (see Fig.9 (left)) 

   W(t, f)=�(f - fa)+� (f - fb)+2cos[2�(fb - fa)t]�[f - 0.5(fa +fb)]   (18) 

Notice, that the oscillating cross term is represented by the delta surface positioned at the mean frequency (fa 

+ fb)/2 and multiplied by 2 while the other deltas are multiplied by 1. 

 
Fig.9.Left: The one-sided WVD of the analytic signal  � � aj2π j2πe ef t f tt � �

b� , fa = 1, fb = 4. The cross-terms are 
oscillating along the line f = 0.5(fa +fb) = 2.5.  

        Right: The two-sided WVD of a single real signal � � � �
0j2π -j2π

0
e eu cos 2π

2

f t f t

t f t �
� �

0

2
0

,  f0 = 2. The cross-  

        terms are oscillating along the zero frequency line.  

 Next example shows the cross terms of the WVD of a sum of two Gaussian analytic signals given by the 

formula 

  � +j� � � �
2 2

0 0π π( ) t t t tt e e� � � �

� �
� � � �

2
0π -πH t t t te e� � �� ��� �� �

   (15) 
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The one-sided WVD of this signal  is displayed in Fig.10. The comparison with Fig.8 shows the existence of 

the cross-terms. 

-6 -4 -2 0 2 4 6
-0.2

0

0.2

0.4

0.6

0.8

f1

f 2

 

Fig.10. Left: The WVD of the signal given by the Eq.(15). Right: The contours of this WVD. 

3.1.4. Cross terms for real signals 

For analytic signals the cross terms are generated, if the signal is a sum of at least two signals. However, a 

real signal can be written as a sum of two conjugate analytic signals (see Eq.(2)). Due to the interaction of 

the terms defined by the positive frequencies and negative frequencies parts of the spectrum  cross terms are 

generated around the zero frequency. As an example consider the harmonic signal cos(2�fat). The WVD of 

this signal can be obtained by inserting in (8) fb = -fa  and dividing by 4.This yields 

   W(t, f)= 0.25[�(f – fa)+� (f + fa)]+0.5cos(4�fa)� (f)   (16) 

This distribution is shown in Fig.9 (right) (compare with Fig.4).  

3.1.5 Cross terms of the WD of 2-D signals 

As in the case of the WVD of 1-D signals the WD of 2-D signals generates cross terms. The derivation is the 

same as given by the Eq.(7). Consider the sum of two complex signals 

   �(x1, x2) = �a(x1, x2)  + �b(x1, x2)    (17) 

The WD of this signal has the form 
  W1(x1, x2, f1, f2)  = F  + a a� �

� �

� F +b b� �
� �

� F  (18) a b b a� � � �
� �

�

� �

�
�

The last term represents the cross terms. Example: Consider the complex signal 

�(x1, x2) = � � � �1 1 2 2 1 1 2 2j2π j2πe ea a b bf x f x f x f x�

�
�     (19) 

The insertion of this signal in (18) and the evaluation of the Fourier transforms yields 

W1(x1, x2, f1, f2)  =� (f1 – f1a)�� (f2- f2a)+� (f1 – f1b)��(f2 – f2b) 

+ � � � �� � 1 1 2 2
1 1 1 2 2 2 1 22cos 2π δ δ

2 2
a b a b

a b a b
f f f ff f x f f x f f�� � �

� � � � � �� � � 	 �
 �
� 
 �

� �
	



  (20) 

Notice, that the deltas should be formally multipled by the functions of (x1, x2) equal one for all x1, x2.  
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3.1.6 Cross terms of WD of  2-D real signals 

The real  2-D signal is represented in terms of the complex signals by the Eq.(3). Therefore, the WD is given 

by the Fourier transform 

W1(x1, x2, f1, f2)  = � �1 1 3 3 1 1 3 3
1 F

16
� � � � � � � �

� � �

� � � � � � � �
� � �� � � � � �� � �

� ��   (21) 

The multiplication of the terms in paranthesis yields 16 terms including the cross terms. Let us have an 

example with the signal  u(x1, x2) = cos(2�fax1)cos(2�fbx2). The complex signals �1 and �3 have the form 

   �1(x1, x2) = � �1 22π a bj f x f x�e  ; �3(x1, x2)  = e � 1 2j2π a b �f x f x�   (22) 

The insertion of �1 in (21) yields sixteen Fourier transforms. The appropriate summation of these transforms 

yields  

 W=(1/16)[�(f1 + fa)��(f2 + fb)+ �(f1 - fa)��(f2 + fb)+ �(f1 + fa)��(f2 - fb) + �(f1 - fa)��(f2 - fb)] 

+(1/4)cos(4�fax1)cos(4�fbx2)�(x1)��(x2)  

 +(1/8){cos(4�fax1) [�(f2 + fb) + �(f2 - fb)] + cos(4�fbx2) [�(f1 + fa) + �(f1 – fa)]}   (23) 

Notice, that all terms are four-dimensional functions. If the function of a variable x1 or x2  is not displayed it 

is equal to one for all x1 or x2  . The first four terms represent the power spectrum in all four quadrants and 

the next two terms represent the cross terms. Since the real signal. u(x1, x2)  is separable, the complex signal  

 �1(x1, x2) contains all information about u. The WD of this complex signal has the form 

     W(x1, x2, f1, f2)  =  �(f1 – fa) ��(f2 - fb)     (24) 

The comparison with (23) shows clearly the advantages of using the complex notation. However, for 

nonseparable signals two distributions  W1(x1, x2, f1, f2)  and W3(x1, x2, f1, f2)  should be calculated.  

4.  Energy relations and moments  

Let us write the analytic signal in the exponential form  �(t ) = u(t) + jv(t) = A(t)exp[j�(t)] . The energy of 

this signal is given by the integral 

    (25) 2 2 2
uE ( ) ( )d ( ) ( ) A ( )d 2Et t t u t v t dt t t

�
� �

� � �
�

�� �� ��

� �� � � �� �� � � �

d

where Eu=�u2(t)dt=�v2(t)dt, that is both terms of the analytic signal have an equal energy. The WVD may be 

used to define instantaneous ( time dependent) spectral moments and frequency dependent time moments. 

The instantaneous (functions of time) spectral moments are defined by the integral 

      mk(t)= � �
k2π Wf ( t , f ) f

�

��
�      (26) 

The k-th power of (2�f) is averaged using the distribution W(t, f). The integration yields (see Appendix ) 
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   � � � � �
k

k0
m j lim 2 2k

k
d( t ) t / t /
d�

� � � �
�

�

�

� �
�� �� � � �� 	
 �

� 

  (27) 

The zero order moment equals the square of the instantaneous amplitude: 

   m0(t)=�(t)�*(t) = A
2
(t) = u

2
(t) + v2(t)     (28) 

and is called alternatively the time marginal of the function W(t, f). The first order moment is  

   � � *
1m ( ) j 2 (t) ( ) (t) ( )t / t t� � � �

��� �� � � �� ( ) ( ) ( ) (t)t v t v t u��= u    (29) �

��

t

The second order moment is 

   2m ( ) 0 25 2 ( ) (t) ( ) ( ) ( ) ( )t . t t t t t� � � � � �
� � �� �� � �� �� �

    = 0     (30) 2 25 ( ) ( ) ( ) ( ) ( ) ( ). u t v t u t u t v t v t� � � �� � � �� ��

Let us recall, that the analytic signal defines the instantaneous complex frequency [9] [8] in the form s(t) = 

(d/dt)Log[� (t)]=�(t) + j� (t). It can be shown, that �(t)=0.5 m (  and �(t)=2�f(t)= m ( )  0 0) m ( )t / t� 1 0m ( )t / t .

The frequency dependent time moments are defined by the integral 

    Mk (f)= �       (31) W( )dkt t , f
�

��

The k-th power of the variable t is averaged using the distribution W(t, f). The integration yields (see  the 

Appendix) 

  � � �
k k

k k0

j dM ( ) lim Γ 2 Γ 2
2π d

f f / f
�

� �
�

�

�

� �� �� �
�/� �� 	� �
 � 
� �

� �� �� �
   (32) 

The zero order moment yields a one-sided power spectrum of the analytic signal 

    M0 (f) = �(f)�*(f )= [1+sgn(f)]2�U(f)�2     (33) 

where �(f)  = [1+sgn(f)]U(f) is the one-sided Fourier spectrum of the analytic signal. The zero order moment 

M0(f) is called alternatively the frequency marginal of the function W(t, f). The first order moment M1(f) is 

given by the formula 

    M1(f) =
*

*Γ( ) dΓ ( )Γ ( ) Γ( )
4π d d

f fj d f f
f f

�
��

� �

�
�    (34) 

The insertion of �(f) and U(f) = URe(f) + jUIm(f)) yields 

   M1(f) = � �
2 Re Im

Im Re
dU ( ) d1+sgn( ) U ( ) U ( )

2π d d
f f1 U ( )f f

f f
� �

�� �
� �

f    (35) 

Notice, that for even signals UIm(f)) = 0 and for odd signals URe(f) = 0. In both cases M1(f) = 0. In 

consequence, the value of M1(f)  is a measure of noneveness and nonoddness of a given signal. 
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4.1 The  complex correlation function 

Let us derive  (33) again using the Wiener-Khinchine theorem. We start with the calculation of the 

frequency marginal of W(t, f) [3] (see Eq.33) 

    
-

W( )= W )dt , f ( t , f t
�

�
�      36) 

The insertion of W(t, f) given by (7) and introducing a change of the order of integration yields 

  � * -j2π

- -
W( )= ( + /2) - /2)dt e dft . f t ( t �

� � � � �
� �

� �
� � �    (37) 

The limit in the paranthesis defines a complex correlation function. The insertion �(t) = u(t) + jv(t) yields 

   � �uu vv vu uvW( )=ρ (τ)+ρ ( )+j κ ( )-κ ( )t , f � � �      (38) 

where  	uu and  	vv are autocorrelation functions and  
vu and  
uv crosscorrelation functions. However, it can 

be shown [9] that 	uu = 	vv and and  
vu = -
uv. In consequence, the limit in paranthesis in (37) defines a 

complex correlation function  

     	c(� ) = 2	uu(�)  +j2
vu(�)     (39) 

It may be shown, that 	c(� )  is analytic, that is  
vu = H[	uu]. Therefore, since (33) is the Fourier transform of  

	c, we get a one-sided power spectrum. We derived (33) using the Wiener-Khinchine theorem. Fig.11 shows 

the terms of a complex correlation function (38) for a one-sided power spectrum �(f) = 0.5[1+sgn(f)]exp(-

cf2). 

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

�  
Fig.11. The real part (solid line) and the imaginary part (dotted line) of the complex correlation function for the power 
spectrum �(f) = 0.5[1+sgn(f)]exp(-cf2). 

4.2 Energy relations of the WD of 2-D complex signals 

Let us extend the results of the previous section for  WD' s of 2-D complex signals. Let us recall that the real 

signal u(x1, x2) is represented by a set of two complex signals �1(x1, x2)  and  �3(x1, x2)   which may have 

different energies. The subscripts q = 1 and q = 3 denote the corresponding quadrants of the f space. Only 
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for certain signals both energies are equal as for example for all separable signals. The polar notation of the 

above signals of the form 

�1(x1, x2) = A1(x1, x2) e  ; �1 1 2j ( )x ,x�

3(x1, x2)  = A2(x1, x2)    (40) 2 1 2jΦ ( , )e x x

defines two different local amplitudes 

         (41) 2 2 2 2 2
1 1 2 1 2 1 2A ( , )=u +v +v +v -2(uv-v v )x x

      (42) 2 2 2 2 2
2 1 2 1 2 1 2A ( , )=u +v +v +v +2(uv-v v )x x

and two local phase functions �1(x1, x2) and �2(x1, x2). Here v(x1, x2) is the 2-D complete Hilbert transform 

of u and v1(x1, x2) and v2(x1, x2) are partial Hilbert transforms in respect to the variables x1 and x2 [7], [9]. 

The energies of the signals u, v, v1 and v2 are equal, that is, 

Eu= = = =   (43) � �2
1 2 1 2u dx ,x x x

� �

�� ��

� � d � �2
1 2 1 2v dx ,x x x

� �

�� ��

� � d � �2
1 1 2 1 2v dx ,x x x

� �

�� ��

� � d d� �2
2 1 2 1 2v dx ,x x x

� �

�� ��

� �

Let us define the notion of the mutual energy given by the integral 

    Em= � �       (44) � �
�

��

�

��

� 2121 dxdxvvuv

However, it may be shown [9], that 

    Euv= � � =      (45) 
�

��

�

��

21dxuvdx � �
�

��

�

��

� 2121 dxdxvv

Therefore, Em = 2Euv. The energies of the complex signals �1 and   �3 are  

   =� �
�

��

�

��

�

� 21111
dxdxE ��

�

2
1 1 2A d dx x

� �

�� ��
� � =4Eu-4Euv   (46) 

   
3 3 3 1 2d dE x x

�
� �

� �
�

�� ��

� � � = 2
2 1 2A d dx x

� �

�� ��
� � = 4Eu+4Euv   (47) 

 

Fig.12. The signal u(x1, x2 ) in the form of a cuboid. 

Let us introduce a quantity called Normalized Energy Difference (NED). It is defined by the formula 

     NED = 3

3 1

E E
E E

� �

� �

�

�

1       (48) 
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A good insight to the energy relations yields a rotation the coordinate system. Since the rotation cancels the 

separability,  the energy of the two signals given by (46) and (47) differs and NED is a function of the angle 

of rotation. Consider the 2-D analytic signal with the the real part u(x1, x2 ) in the form of the cuboidal signal 

of Fig.12. 

Fig.13(left) shows an example of the dependence of the value of NED for this signal as a function of the 

angle of rotation �. The parameter b/a equals the ratio of  the sides of the rectangular support of the cuboid. 

Notice, that for long and narrow objects ( large value of b/a) a small rotation gives a large energy difference. 

On the other hand for the square (b = a) there is no energy difference for all �. Fig.13(right) shows the value 

of NED for the Gaussian signal defined by the equation of example 3 in section 3.1.2. The value of  k2  

corresponds to the value of b/a of the cuboid. We observe, that the Gaussian signal is more sensitive to 

rotation in respect to the cuboid.  

 

1

0.8

0.6

0.4

0.2

0

b/a=32

b/a=8
b/a=4

NED

� ��� ���

��

�

b/a=1

1

0.8

0.6

0.4

0.2

0

NED
k =32

k =4

k =2

k =8

2

2

2

2

� ��� ���

��

�

k=1

 
Fig.13. The  dependence of the value of NED  on the angle of rotation �. Left for the cuboidal signal with different ratios 
b/a. Right for the Gaussian signal given by the Eq.(14).  

    Let us recall that the Gaussian signal has the smallest product  

  Effective Support of the Signal�Effective Support of the Spectrum    (49) 

in comparison to other signals including the cuboid. This causes a stronger sensitivity to rotation. The above 

examples presented the effect of rotation of the coordinate system on the distribution of the energies  

and  for simple signal models given by mathematical functions. Let us have  examples with natural 

images. Fig.14a shows the popular Lena image. We used a circular frame to avoid the effects caused by the 

rotation of the frame. Fig. 14b shows the change of the two energies caused by the rotation of the x 

coordinate system. Fig.15 shows the same effect for a more complicated computer generated image. As 

expected, the effect of rotation is smaller in comparison to the simpler image of Fig.14a. 

1
E
�

3
E

�
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Fig.14a. The Lena image in a cirsular frame.             Fig.14b. The NED of the Lena image as a function 
                    of the rotation angle �/ 
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Fig.15.a. A computer generated test signal           Fig.15b. The NED of  the test signal as a function 
               in a circular frame.                  of the angle of rotation �. 

4.3 Moments for 2-D complex signals 

As in the 1-D case ( see Eqs.(26) and (31) ) let us define two-dimensional frequency domain moments 

mkl(x1, x2) and two-dimensional x domain moments Mkl(f1, f2). The frequency domain moments are defined 

by the integral 

    mkl(x1, x2) = � � � � � �
k l

1 2 q 1 2 1 2 12π 2π W , , , d d 2f f x x f f f
� �

�� ��
� � f   ;   q = 1 ,3  (50) 

where W1 and W3 are the distributions defined by the signals �� and �� respectively.The integration yields 

(derivation is similar as given in the Appendix ) 
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� � � � � � � � �
1 2

kl
k l

k,l 1 2 1 1 2 2 1 1 2 2k l0, 0
1 2

m , -j -j lim / 2, / 2 / 2, / 2
 q qx x x x x x

� �

�
� � � � � �

� � �

�

� �

� �
�� �� � � �� 	�
 ��
 �

             (51) 

(q = 1, 3). For example the moment indexed (0,0) equals the local power of the signal �1(x1, x2)  

    m0, 0(x1, x2 ) = 2
1 1 2 1 1 2 1 1 2( , ) , ) A ( , )x x x x x x�

�� �      (52) 

The next moments are 

    � �
*

q q
1,0 1 2 q

1 1

jm ,    ;  q = 1, 3
2 qx x

x x
� �

� �
� �

�
� �� �

� � �� �
� �	 


    (53) 

    � �
*

q q*
0 1 1 2 q q

2 2

jm    ; q=1, 3
2, x ,x

x x
� �

� �
� �

� �� �
� � �� �

� �	 

   (54) 

The analytic signal  �n defines two partial complex frequencies [7] [9], [10] of the form   

    
1 11 1 2 q 1 2 1 1

1

( , ) Log ( , ) jxs x x x x
x
�

� �
�

� �� �� � 1x x��    (55) 

   
2 21 1 2 q 1 2 1 1

2

( , ) Log ( , )x 2x xs x x x x j
x
�

� �
�

� �� �� � ��    (56) 

These local frequencies can be written in the terms of the moments 

    
1

0,0
1

1
0,0

0.5 m

mx
x
�

�
��   ; 

1

1,0
1

0,0

m
mx� �    (57) 

    
0,0

0,0
2

1

5.0

2 m

m
x

x
�

�

��   ; 
2

0,1
1

0,0

m
mx� �    (58) 

The x domain moments are defined by the integral 

      (59) � �k,l 1 2 1 2 q 1 2 1 2 1 2M ( , ) W , , , d d    ;   q =1, 3k lf f x x x x f f x x
� �

�� ��

� � �

The integration yields (derivation is similar as given in the Appendix) 

� � �
1 2

k l

k,l 1 2 1 1 2 2 1 1 2 20, 0
1 2

j jM ( , ) lim / 2, / 2 / 2, / 2
2π 2π

kl

n nk lf f f f f f
� �

�
� � � �

�� ��

�

� �

� �� � � �
�� �� � 	 	 � 
� �
 � 
 � 
� �� � � � � �

  (60) 

Especially, the moment M0,0(f1, f2) for q = 1 yields a single-quadrant power spectrum in the first quadrant 

   M0,0(f1, f2) =  16�1(f1 1 2 1 1 2( , ) ( , )f f f f�

� � � 1, f2) |U(f1,f2)|2   (61) 

Analogously, for q = 3 we get a single-quadrant power spectrum in the third quadrant. The next moment  

M1,0  is 

   � �
*

1 2 q 1 2
1,0 1 2 q 1 2 1 2

1 1

( , ) ( , )jM , ( , ) ( ,
4π

q
q

f f f f
)f f f f

f f� �

�
� ��� ��� �

� � � �� 	
� �
 �

f f   (62) 

The moment  M0,1 is given by the same formula changing �/�x1 by �/�x2. 
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4.4 The 2-D complex correlation function 

Similarly, as in the 1-D case, let us derive the power spectrum (60) as the inverse Fourier transform of a 

complex 2-D correlation function with a single-quadrant spectrum. We start  with the frequency domain 

marginal of the 4-D WVD given by the integral 

    � �1 2 1 2 q 1 2 1 2 1 2( , , , ) W , , , d dq x x f f x x f f x x
� �

�� ��

� � �W    (63) 

( q = 1, 3). Let us insert the distribution W given by the Eq.(10). By changing the integration order we get  

� � � �1 1 2 2j2π
q 1 2 1 2 q 1 2 1 2W ( , , , ) ( ) ( )d d e d df f

qx x f f x x � �

� � � � � �
� � � �

� ��

� �
�� �� �� ��

� � � � �  

 (64) 

The insertion of the analytic signal [7], [8] 

�1(x1, x2) = u(x1, x2) - v(x1, x2)  +j [v1(x1, x2) + v2(x1, x2)]    (65)  

where v = H(u) is the total Hilbert transform of u and v1 = H1(u)  and v2 = H2(u) are partial Hilbert 

transforms. The evaluation integral in parenthesis yields an analytic correlation function  of the same 

structure as the signal �1 of the form 

� � � � � � � �
1 1 2 2c1 1 2 uu 1 2 vv 1 2 v v 1 2 v v 1 2ρ ( , ) 4 ρ , ρ , j4 ρ , ρ ,� � � � � � � � � �� �� � � �� �� � � �  (66) 

This correlation function is analytic and its Fourier transform yields a single quadrant power spectrum (see 

Eq.(61)). We derived the Wiener-Khinchine theorem for complex signals with single-quadrant spectra. All 

the above quantities have been derived starting with  complex signals �1(x1, x2). A similar derivation can be 

applied to the analyic signal  �3(x1, x2) yielding an analytic correlation function corresponding to a third 

quadrant power spectrum. Therefore, we have two sets of moments, two correlation functions, two single-

quadrant power spectra (in the first and third quadrant respectively)  and two sets of partial local complex 

frequencies given by the equations (57) and (58). Fig.16 shows the real parts and imaginary parts of the 2-D 

complex correlations functions for a 2-D separable Gaussian signal. 

 

a) �uu(�1, �2)         b) �vv(�1, �2) = H[�uu(�1, �2)] 
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c) �v1v1(�1, �2) = H1[�uu(�1, �2)]    c) �v2v2(�1, �2) = H2[�uu(�1, �2)] 
 
Fig.16. The four terms of the analytic correlation function given by the Eq.(64) corresponding to a Gaussian real signal   
u(x1, x2)  

4.5 Energy relations and moments for WD's of 3-D complex signals 

The extension of the energy relations and the derivation of moments presented in the previous sections for 1-

D and 2-D signals for 3-D complex signals is straightforward. A 3-D real signal is represented by a set of 

four complex signals with a single octant spectra of the form [7], [9] 

 � � � � � �1 1 2 3 8 1 2 3 12 13 23 1 2 3, , , , u-v -v -v +j v +v +v -vx x x x x x� �
�

� �
1j

1=A e �   (67) 

  � � � � � �2 1 2 3 7 1 2 3 12 13 23 1 2 3, , , , u+v +v -v +j -v +v +v +vx x x x x x�

� �� �   (68) 2j
2=A e �

  � � � � � �3 1 2 3 6 1 2 3 12 13 23 1 2 3, , , , u+v -v +v +j v -v +v +vx x x x x x�

� �� �   (69) 3j
3=A e �

  � � � � � �4 1 2 3 5 1 2 3 12 13 23 1 2 3, , , , u-v +v +v +j -v -v +v +vx x x x x x�

� �� �   (70) 4j
4=A e �

where v is the complete Hilbert transform in respect to all three variables, v12, v13 and v23 are partial Hilbert 

transforms in respect to two variables and v1, v2 and v3   in respect to a single variable. The real signal u(x1, 

x2, x3) can be reconstructed in terms of the complex signals using the Eq.(4). The energies of these signals 

are given by the integral 

q

*
q q 1 2 3 q 1 2 3E d d d A d d d2x x x x x x

�
� �

� � � � � �

�� �� �� �� �� ��

� �� � � � � � ; q = 1, 2, 3 , 4  (71) 

The energies of  the four signals are different except the case of signals with a full symmetry of the spectrum 

including separable signals. For separable signals all the amplitudes are equal and given by the formula 

         (72) 2 2 2 2 2 2 2 2
0 1 2 12 13A =u +v +v +v +v +v +v23

4.5.1 Relativity of the 3-D Fourier spectrum 

As in the 2-D case the Fourier spectrum of a 3-D signals is relative and may change with the shift or rotation 

of the 3-D Cartesian signal coordinates. Let us study the effect of rotation. Let us recall  the Parseval's 

equality for 3-D real  signals  
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E= =2
1 2 3 1 2 3u d d( x ,x ,x ) x x x

� � �

�� �� ��
� � � d � �2

1 2 3 1 2 3U d d df , f , f f f f
� � �

�� �� ��
� � �  (73) 

The value of E defines the total energy of the real signals. The integration in the frequency domain yields a 

sum of the energies of succesive eight octants. For a certain class of signals, especially separable signals, all 

eight octants have the same energy equal E/8. The rotation of the coordinate system can change the energy 

distribution between the octants. In consequence the energies of the four complex signals (67) to (70) may 

differ. Let us illustrate this change using a separable  3-D Gaussian signal. The rotation of the 3-D Cartesian 

coordinate system is defined by three Euler's angles denoted �, � and � . Fig.17 shows the dependence of 

the energy distribution between four octants enforced by the simultaneous change of all three angles, only 

two angles or a single angle. The parameter k defines the ellipticity of cross-sections of the 3-D Gaussian 

signal. Notice, that due to the Hermitian symmetry it is sufficient to observe the changes for four octants. 
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Fig.18. The rotation of a 3-D Gaussian signal. The dependence of the energy in octants on the angles of rotation. 

4.6 Moments for 3-D complex signals 

The four WD's  denoted Wq(x1, x2, x3, f1, f2, f3)  (q = 1, 2, 3, 4) define each f domain moments and x domain 

moments. The f  domain moments are defined by the formula 

mklm(x1, x2, x3) = � � � � � � � �
k l m

1 2 3 q 1 2 3 1 2 3 1 2 32π 2π 2π W d d df f f x ,x ,x , f , f , f f f
� � �

�� �� ��
� � � f     (74) 

and the derivation yields (we resigned to label mklm with the subscript q to avoid to many subscripts). 
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mklm(x1, x2, x3) =           (75) 

� � � � � �
klm

k l m 3 31 2 1 2
1 2 3 q 1 2 3k l mall 0

3

-j -j -j lim
2 2 2 2 3q x ,x ,x x ,x ,x

�

� �� � � � �
� �

� � �

�

�

� �� �� �� �
� � � � � �� 	
 � 
 �

� 
� �� 
� �
 

The derivation is similar as given in the Appendix. The moment indexed (0,0,0) (x domain marginal ) equals 

the local power of the signal 

   mooo(x1, x2, x3) = �q(x1, x2, x3)  �q*(x1, x2, x3)  =Aq2(x1, x2, x3)      (76) 

The f domain moments are defined by the integral 

 Mklm(f1, f2, f3) = � �k l m
1 2 3 q 1 2 3 1 2 3 1 2 3W d d dx x x x ,x ,x , f , f , f x x x

� � �

�� �� ��
� � �   (77) 

and the derivation similar as given in the Appendix yields 

Mklm(f1, f2, f3) =            (78) 
k l m klm

*3 31 2 1 2
q 1 2 3 q 1 2 3k l mall 0

3

j j j lim Γ Γ
2π 2π 2π 2 2 2 2 3

f , f , f f , f , f
�

� �� � � � �

� � ��

� �� �� �� �� � � � � �
� � � � � �� 	
 �
 � 
 � 
 � 
 �

� 
 � 
 � 
 � 
� �� 
� �
 

Analogously to the Eqs.(38) and (66) a 3-D complex correlation function can be derived using the x domain 

mean value of the WVD. As well, the local partial complex frequencies may be represented using 

appropriate moments. 

5 Conclusion 

In this paper we presented the extension of the notion of the Wigner-Ville time-frequency distribution of 1-

D analytic signals for 2-D and 3-D complex signals with single orthant spectra. Especially, 2-D signals with 

single-quadrant spectra define two different 4-D WD and 3-D signals with single-octant spectra define four 

different 6-D WD. The fundamental question is, whether it is reasonable to apply complex signals instead of 

real signals. Somebody could argument that using real signals we operate with a single distribution instead 

of two, four and so on. However, using real signals the distribution is defined using the full Fourier 

frequency space while the complete information about the signal is contained in the half Fourier frequency 

space. We produce also much more cross terms in comparison to cross terms produced using complex 

signals. On the other hand, the necessity of calculation a set of two distributions in the 2-D case or four in 

the 3-D case cannot be classified only as an inconvenience. Firstly, we have no choice, because it is 

enforced by the nature of the complex notation of Fourier transformations. The half Fourier frequency space 

is divided into two quadrants or four octants which in general contain different information about the signal 

and define signals with different energies. Secondly, in digital signal processing, using the frequency 

domain algorithm of calculation of the WD the number of operations used to calculate these two (or four) 

distributions is smaller, than should be used to calculate the single distribution defined by a real signal. 

 21



Thirdly, the two different distributions can fascillitate the evaluation of the informations contained in the 

distributions. The development of the presented extensions of the notion of the Wiegner-Ville distribution 

could not be done without the use of the notion of complex signals with single orthant spectra given in the 

previous paper of Hahn [7]. We forecast, that the presented theory has many potential applications and hope 

that our paper can be used to start next research in this field. Especially, better methods of graphical 

representations of four and six-dimensional functions should be applied. The presented extensions of the 

Wiener-Khinschine theorem and the definitions of moments were also possible using the complex notation. 

Let us mention, that many details of the presented theory have been developped during the preparation of 

the manuscript. In this paper we used the theory of signals with single-orthant spectra to show, that the 

complete spectral description of a n-D signal is carried by the half Fourier space. This fact is well described 

by many authors for 1-D signals. The extension to higher dimensions is obvious. However, we have not 

found a clear statement about it in available sources. The theoretical part of this paper including the 

derivation of the formulae has been done by S.Hahn. Dr.A.Buchowicz checked these derivations. The 

computational part has been developped by both authors in a close cooperation. 
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Appendix : The derivation of the moments defined by the WVD 

We shall use the following formulae: The Fourier transform and inverse Fourier transform of     (j2�f)k of 

the form 

    � � � �
k k-j2π (k)j2π e d 1 δ ( )fyf f

�

��

� �� y     (A1)  

    � �
k j2π (k)j2π e d δ ( )fyf f

�

��

�� y      (A2)  

 where �(k)(y) is the k-th derivative of the delta distribution ( generalized function ). For any function f(y) 

differentiable k-times at the origin the following relation holds ( see [8],page 14)   

          (A3)

  

(k) k (k)f( )δ ( )d (-1) f (0)y y y
�

��

��

The time dependent moment mk(t) is defined by the integral 

    mk(t) = � �k(2π ) W df t , f f
�

��
�      (A4)  

where k = 0, 1, 2... is the order of the moment. The multiplication and division  by jk and insertion of  W(t, 

f) given by (7) yields  

   mk(t) = (-j   (A5)  � � � �� kk - π) 2 2 j2π e d dft / ( t / ) f f�

� � � �
� �

�

�� ��

� �� � �j2
�

The intergal in paranthesis {} yields (-1)k �(k)(�) ( see (A1) ) and  due to (A3) we get 

   mk(t) = � � � � �
k

k
k0

d-j lim 2 2
d

t / t /
t�

� � � �
�

�

� �
�� �� �� �	 


� �
   (A6)  

The application of the operator "lim" is necessary, since we should first differentiate and then insert � = 0. 

Notice that the product of  (-1)k (-1)k from (A1) and (A3) equals 1.  

The frequency dependent moment Mk(f)  is defined by the intergal 

     Mk(f)  = �      (A7)  � �kWt t , f
�

��

dt

The multiplication and division  by (j2�)k and insertion of  W(t, f) given by (8) yields 

   Mk(f)  = � � � �� �
k

k j2πj- 2 2 j2π e
2π

tf / ( f / ) t dt�
� � � �

� �
�

�� ��

� �
� �

� �
� � d�� �  (A8)  
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The intergal in paranthesis {} yields �(k)(�) ( see (A2) ) and  due to (A3) we get 

   Mk(f)  = � � �
n k

k0

j dlim Γ 2 Γ 2
2π d

f / f /
�

� �
�

�

�

� �� �
�� �� �	 
� � 
 �� � � �

  (A9)  

Notice that the product of  (-j)k (-1)k ( see (A3) ) equals jk. 

The application of the same procedure, as used above enables the derivation of the moments defined by the 

4-D WD, that is  mkl(x1, x2) and Mkl(f1, f2) defined by the Eqs.(49) and (58). Due to the separability of 2-D 

delta distribution the 1-D formulae (A1) and (A2) can be applied. The formula (A3) takes the form 

     (A10)  � � � �
l(k) (l) k (kl)

1 2 1 2 1 2f δ ( )δ ( )d d (-1) -1 0 0y , y y y y y f ( , )
� �

�� ��

�� �

Since the dervation is similar,as in the 1-D case, details are not presented here. 
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