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1. Introduction 

The notion of an n-D analytic signal with single-quadrant spectrum has been defined by the 

author in 1992 [1]. The description can be found also in [2]. Recently Bülow and Sommer 

defined the notion of a quaternionic 2-D complex signal [3], [4] and Felsberg and Sommer  

defined the notion of a monogenic 2-D signal [5], [6]. Here we show, that all three signals, 

that is the analytic, quaternionic and monogenic signals have a common representation in the 

form of a convolution of a real signal u(x1, x2) with an appropriate complex delta distribution, 

which is different for the above mentioned three signals.  

 2. The analytic 2-D signal    

Consider a real signal u(x) is defined in the Cartesian signal plane  x = (x1, x2) and its Fourier spectrum  

 U(f)= = F[u(x1, x2)] =    (1) � � � ��� �
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defined in the Fourier frequency plane f = (f1, f2). This plane is a sum of four quadrants. However, due 

to the Hermitian symmetry of U(f),  [ U(f1, f2) = U*(-f1, - f2)  and  U(f1, -f2) = U*(-f1,  f2) ], all spectral 

information is contained in a half-plane , for example the half-plane f1 > 0.  In consequence in general 

a given real signal is represented by two analytic signals with single quadrant spectra.  For example 

the first is given by the inverse Fourier transform of  U(f) multiplied by the frequency domain operator 

  �1(f) = [1+sgn(f1)] [1+sgn(f2)] = [1+sgn(f1) + sgn(f2) + sgn(f1)sgn(f2)]  (2) 

and the second by the multiplication by 

  �3(f) = [1+sgn(f1)] [1-sgn(f2)] = [1+sgn(f1) - sgn(f2) - sgn(f1)sgn(f2)]  (3) 

Since multiplication in the frequency domain corresponds to the convolution in the signal domain, the 

first signal is given by the formula 

�1(x) = F-1[�1(f)�� u(x1, x2)] = ��1(x)�� u(x1, x2)   (4) 

and the second (subscript 3 represents the accepted labeling of quadrants) 

   �3(x) = F-1[�3(f)�� u(x1, x2)] = ��3(x)�� u(x1, x2)   (5) 

The signals ��1(x) and ��3(x) are called complex delta distributions [7]. Therefore, the analytic 

signals can be redefined as convolutions of a real signal with complex delta distributions. The 

inverse Fourier transform of  (2) yields 
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and analogously 
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The insertion of (6) in (4) yields the first analytic signal 

�1(x) = u(x) - v(x) + j[v1(x) + v2(x)]     (8) 



and the insertion of (7) into (5) yields the second analytic signal 

�3(x) = u(x) + v(x) + j[v1(x) - v2(x)]     (9) 

 where  v(x) is the total Hilbert transform of u(x) w.r.t . both variables and v1(x)  and v2(x) are partial 

Hilbert transforms w.r.t. a single variable (see Appendix 1 for integral forms). 

3. The quaternionic complex 2-D signal 

The notion of a quaternionic complex signal has been defined in [4] and [5] using the quaternionic 

Fourier transform of u(x) of the form  

 Uq(f1, f2) = Fq[u(x1, x2)] =   (10) � � � � � �� �
�
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where i and j, are imaginary units each equal sqr(-1). The inverse Fourier transform over the first 

quadrant, i.e.,  
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yields the quaternionic complex signal of the form 

   �q(x) = u(x) +iv1(x) + jv2(x) +k v(x)     (12) 

The notations are the same as in  (8) and (9) and the imaginary units fulfill the following algebra 

i2 = j2 = k2 = -1,  ij = -ji = k, ik = -ki= -j. The insertion in (12) u(x) = �(x1, x2) yields the notion of the 

quaternionic complex delta distribution [8] of the form 
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and the quaternionic complex signal can be alternatively defined by the convolution 

    �q(x) = u(x)�� �q�(x)      (14) 

The comparison of the properties of analytic and quaternionic complex signals can be found in [x]. 

4. The monogenic complex 2-D signal. 

In  recent papers [5], [6]  the authors defined the notion of a monogenic complex signals. We do not 

intend here to describe the derivations which can be found  in [5] and [6]. The monogenic complex 

signal has the form 

�M(x) = u(x) - i�r1(x) - j�r2(x)                           (15) 

where  �r1(x)  and �r2(x) are the Riesz transforms of  u(x) defined by the convolutions 
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The Fourier transforms of the Riesz kernels are 
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Therefore, the alternative definition of  �r1(x)  and �r2(x) is given by the inverse Fourier transforms 
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For the signal u(x) = �(x1, x2) we define the monogenic complex delta distribution  
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Analogously to the Eqs.(4), (5) and (14) the monogenic complex signal can be redefined as a 

convolution of the real signal with the monogenic complex delta distribution: 

�M(x) = u(x)�� �M�(x)     (20) 

5. Auto-convolutions of the complex delta distributions 

The auto-convolution of the analytic complex delta distribution given by the Eq.(6) is 

��1(x)�� ��1(x) = 4��1(x)     (21) 

The same autoconvolution for the quaternionic complex delta distribution given by (14) is 

�q�(x)�� �q�(x) = 2�q�(x)                 (22) 

The derivation of (21) and (22) is given in the Appendix 2. Notice, that the formulae (21) and (22) 

differ only by the numerical factor 4 and 2. The auto-convolution of the monogenic complex delta 

distribution is 
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and remarkably has the same form, as (22).  Derivation of (23) is given in the Appendix 3. 

.6. Auto-convolutions of the complex signals 

Let us denote by ��(x) = �1(x)���1(x) the auto-convolution of the analytic signal (4), and by u�(x) 

=u(x)��u(x) the auto-convolution of the real signal u(x). Using Eq.(21) we get 

   ��(x) = �1(x)���1(x) = 4 ��(x)��u�(x)                (24) 

Similarly, let us denote by �q�(x) = �q(x)���q(x)  the auto-convolution of the quaternionic  signal 

(14). Using the Eq.(22) we get 

   �q�(x) = �q(x)���q(x) = 2 �q�(x)��u�(x)    (25) 

Similarly, 

   �M�(x) = �M(x)���M(x) = 2 �M�(x)��u�(x)    (25) 

 

7. Conclusions 

Analogously to the analytic complex delta distribution defined in [7] analogous distributions have 

beee defined for the quaternionic [8] and monogenic signals. All these signals can be written in the 

form of a convolution of a real signal with the appropriate complex delta distribution.  Let us mention, 



that the Eq.(4) applies for any dimensions , since the n-D analytic signals are a natural extension of the 

Gabors 1-D analytic signal from the point of view of the n-D analytic functions given by the n-D 

Cauchy integral. [9]. 
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Appendix 1 

Consider a 2-D real signal u(x1, x2). Its total Hilbert transform is defined by the integral   

  � � � �� �
� �

� �� �� �
�

�

�

�
��

��

- - 2211

2121
22121

dd P1H
xx

uxxuxxv
��

����

�

,,,     (A1) 

where P denotes the Cauchy principal value of the inegral. The partial Hilbert transform in respect to 

the variable x1  is defined by the integral 
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and in respect to the variable x2 by the integral 
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.Appndix 2 

By the derivations of the autoconvolutions of the complex delta distributions we apply the following 

formulae 

 �(x1, x2) =  �(x1, x2)�� �(x1, x2), � �1
1 1

1 1 δ
π π

x
x x
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Notice, that convolutions are commutative, that is,  u(x)��v(x) = v(x)��u(x) and associative, that is 

[u(x)��v(x)]��w(x) = u(x)��[v(x)]��w(x)]. 

Appendix 3 

The monogenic complex delta distribution given by the Eq.(19)  
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and its auto-convolution is 

 �M�(x)���M�(x)  

= [� - i�r1 -j�r2]�� [� - i�r1 -j�r2] = ���� - �r1���r1 -  �r2���r2 

-i����r1 -j����r2  -i�r1��� + ij[�r1���r2} -j����r2 +ji�r2���r1 

The terms with ij and ji cancel. Let us investigate the term - �r1���r1 -  �r2���r2. Due to the Fourier 

relations (17), the Fourier transform of this term is 
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and the inverse Fourier transform yields �(x1, x2)..  

 


