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Introduction 

    Consider a two-dimensional real signal u(x1, x2) defined in the Cartesian signal plane  

x=(x1, x2) and its Fourier spectrum defined by the integral 

 U(f1, f2)= = F[u(x1, x2)] =   (1) � � � �� �� �
�

��

�
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The quaternionic spectrum is defined by the integral 

 Uq(f1, f2) = Fq[u(x1, x2)] =  (2) � � � � � �� �
�
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It applies two imaginary units i and j, each equal sqr(-1) in comparison to a single unit j in (1). 

Let us remind that the Fourier Cartesian frequency plane  f = (f1, f2) consists of four quadrants 

depicted in Fig.1. The multiplication of the spectrum U(f1, f2) with the operator 
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Fig.1. The four quadrants of the plane (f1, f2) 

 

[1 + sgn(f1)] [1 + sgn(f2)] yields the single-quadrant spectrum of the analytic signal with the 

support in the first quadrant. The inverse Fourier transform of this spectrum yields the 

following form of the analytic signal [1], [2] 

    �1(x1, x2) = u(x1, x2) - v(x1, x2) +j[v1(x1, x2) + v2(x1, x2)] = A1(x1, x2) exp[�1(x1, x2)]  (3) 

Similarly, the multiplication with the operator [1 + sgn(f1)] [1 - sgn(f2)] yields a single-

quadrant spectrum with the support in the third quadrant. The inverse transform yields the 

analytic signal 

  �3(x1, x2) = u(x1, x2) + v(x1, x2) +j[v1(x1, x2) - v2(x1, x2)] = A2(x1, x2) exp[�2(x1, x2)]  (4) 

which differs from  �1 only by signs. Here the function  v(x1, x2) is the total Hilbert transform 

of  u(x1, x2). The functions v1(x1, x2) and v2(x1, x2) are partial Hilbert transforms with respect to 

x1 or x2 (see Appendix). Due to the Hermitian symmetry of the Fourier spectrum U(f1, f2) the 

real signal can be reconstructed from the half-plane spectrum, for example the half-plane f1 > 

0. The reconstruction formula is  

    u(x1, x2) = 0.5[A1cos(�1) + A2cos(�2)]   (5) 



We observe, that the real signal u(x1, x2) should be reconstructed from the sum of two analytic 

signals �1(x1, x2) + �3(x1, x2). It is so, since the two amplitudes and phase functions are 

different. They are given by the formulae 
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The notation by capital A indicates the multi-branch character of the arctg function. We 

observe, that the amplitudes A1 and A2 differ by the factor 2(v1v2 -uv). The energies of the 

analytic signals �1(x1, x2) and �3(x1, x2)  are given by the formulae 
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Evidently, the energy difference is given by the formula [4]  

    �E = E1- E3 =    (10) � �� �
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Let us introduce the notion of NED- the Normalized Energy Difference given by the equation 

    NED = �E/(E1 + E2)      (11) 

Separable 2-D signals 

A separable 2-D signal has the form of a product of 1-D signals, that is, u(x1, x2) = f1(x1) f2(x2).  

For separable signals the factor 2(v1v2 -uv) equals zero. Therefore, both amplitudes are equal 

and given by 
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and the corresponding analytic signals  are also separable:  

      �1(x1, x2) = Aexp{j[�1(x1)+ �2(x2)]}   (13) 

      �3(x1, x2) = Aexp{j[�1(x1)- �2(x2)]},   (14) 

that is, the phase functions (8) have the form 

                    �1(x1, x2) = �1(x1)+ �2(x2)         ;         �2(x1, x2) = �1(x1)- �2(x2)   (15) 

where  �1(x1) = Tan-1(g1/f1) and  �2(x2) = Tan-1(g2/f2), g1, g2 are the 1-D Hilbert transforms of   

f1, f2 . Of course, due to the Parseval’s theorem for separable signals the spectral energy in all 

quadrants of the Fourier plane is the same. 



The quaternionic complex signal 

The quaternionic complex signal is defined [3] by the inverse quaternionic Fourier transform 

of  the quaternionic  spectrum in the first quadrant and given by the formula 

  �q(x1, x2) = u + iv1 + jv2 + kv   ;   ij=k   (16) 

and in the polar form by 

  �q(x1, x2) = Aq exp(i�i) exp(j�j) exp(k�k),   (17) 

that is, by a single amplitude given by (12) and three phase functions given by the equations 
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Derivation of the relations between the phase angles of the analytic signals and 

quaternionic complex signals. 

The insertion of the Eq.(19) in (6) yields the relations between the amplitudes: 

  � �kq1 2sin1AA ���         ;       � �kq2 2sin1AA ���    (22) 

Therefore, 
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The above formula shows, that the angle �k� (-�/4, �/4) and the values ��/4 occur only, if A1 

or A2 equal zero. For natural images the probability that one of the amplitudes vanishes is 

very small. The addition of the tangent functions given by (18) yields 

   � � � � � � � �� �21
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and the subtraction  
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Therefore, the phase functions of the quaternionic complex signal are related to the phase 
functions �1 and �2 by the equations 
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and we get the simple relations 

   �i = 0.5(�1 + �2) ; �j = 0.5(�1 � �2)   (29) 

The energy difference defined by the Eq.(10) may be written using the Eq.(19) in the form 

   �E =      (30) � �� �
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 For separable signals or for signals with circular symmetry �k equals zero and �E = 0. 

Let us mention, that separability is relative in respect to the rotation of the coordinate system. 

A signal separable in a non-rotated coordinate system may be non-separable in the rotated 

system.  For separable signals the phase functions given by Eq.(29) take the form 

  �i = �1 ;  �j = � ; �k = 0      (31) 

For quaternionic signals the reconstruction formula ( see Eq.5) nas the form 

  u(x1, x2) = Aq[cos(�i) cos(�j) cos(�k) -sin(�i) sin(�j) sin(�k)   (31) 

Example 1  

Consider a real signal in the form of a product of two cosine functions  

    u(x1, x2) = cos(2�f1x1) cos(2�f2x2)    (32) 

The corresponding analytic signal defined by the Eq.(3) is     (33) 

   �1(x1, x2) = exp[j2�(f1x1 + f2x2)] = exp(j�1) exp(j�2)   (34) 

Evidently, �1 = 2�f1x1+ 2�f2x2 and �2 = 2�f1x1�2�f2x2.  We have A = Aq = 1,  �i= 2�f1x1,   �j = 

2�f2x2  and of course �k = 0. The phase functions are displayed in Fig.1. 

 

 
  Fig.1a. The phase functions of the analytic signal: Left �1 , right �2. 



 
  Fig.1b.The quaternionic phase functions: Left �I, right �j. 

Example 2 

Consider the 2-D complex delta distribution [5] 

   �� (x1, x2) = [�(x1) + j(1/(�x1)]�[�(x2) + j(1/(�x2)]   (35) 

where � denotes the tensor product of distributions. Let us omit this symbol in next notations. 

The local amplitude has the form 

    A� (x1, x2) = 1/(�2|x1||x2|)     (36) 

And the phase functions are 

  �(x1, x2) = �1(x1)+ �2(x2) = 0.5�sgn(x1) + 0.5�sgn(x2)   (37) 

Let us remind, that the 2-D analytic signal (3) may be written in the convolution form 

    �1(x1, x2) = u(x1, x2)�� �� (x1, x2)    (38) 

Let us define the quaternionic complex delta distribution 

  ��q (x1, x2) = � (x1, x2) + i�(x2)/(�x1) + j�(x1)/(�x2) + k[1/(�2x1x2)]  (39) 

The local amplitude is given by the Eq.(36), and the phase functions are 

  �i(x1, x2) = �1(x1) = 0.5�sgn(x1)  ; �j(x1, x2) = �2(x2) = 0.5�sgn(x2)   (40) 

Analogously to (38), the quaternionic complex signal (16) may be written in the convolution 

form 

    �q(x1, x2) = u(x1, x2)�� ��q (x1, x2)    (41) 

Example 3 

This example is illustrated only by images.  



 
         Original image 

 
   The amplitude A1 of the analytic signal �1  The amplitude A2  of the analytic signal �3 

         

 
The phase function�1 of the analytic signal �1         The phase function �2 of the analytic signal �3 

 

 



 
 The quaternionic amplitude Aq   The quaternionic phase�k 

 

  The quaternionic phase�i =0.5(�1 +�2 )  The quaternionic phase �j =0.5(�1 � �2 ) 

 
Reconstruction from analytic signals, Eq.(6) Quaternionic reconstruction, Eq.(31) 

The original signal is non-separable. In consequence the quaternionic phase 	k (see Eq.24) 

differs from zero. However, the quaternionic amplitude Aq (see Eq.(23)) does not differ much 

from the two amplitudes A1 and A 2 of the analytic signals �1 and �3. Remark: The phase 

jumps of the presented phase functions are not removed 

 



Conclusion  

A real signal may be represented by two analytic signals, that is by two amplitudes and two 

phase functions or alternatively by a single quaternionic complex signal, that is, by a single 

amplitude and three phase functions. We derived very simple formulae relating the 

quaternionic and analytic representations of the above amplitude and phase functions. 
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Appendix 

Consider a 2-D real signal u(x1, x2). Its total Hilbert transform is defined by the integral   
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where P denotes the Cauchy principal value of the inegral. The partial Hilbert transform in respect to 

the variable x1  is defined by the integral 
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and in respect to the variable x2 by the integral 
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