

WARSAW UNIVERSITY TECHNOLOGY FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY INSTITUTE OF RADIOELECTRONICS

Report No.2, 2000

Comparison of amplitude and phase functions of two-dimensional analytic and quaternionic signals

by

Stefan L. Hahn^{*}

Warsaw, 4 December 2000

^{*} Institute of Radioelectronics, Nowowiejska 15/19, 00-665 Warsaw, tel./fax: (4822) 8255248 e-mail: hahn@ire.pw.edu.pl

Introduction

Consider a two-dimensional real signal $u(x_1, x_2)$ defined in the Cartesian signal plane $x=(x_1, x_2)$ and its Fourier spectrum defined by the integral

$$U(f_1, f_2) = F[u(x_1, x_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_1, x_2) \exp[-j2\pi(x_1f_1 + x_2f_2)] dx_1 dx_2$$
(1)

The quaternionic spectrum is defined by the integral

$$U_{q}(f_{1}, f_{2}) = F_{q}[u(x_{1}, x_{2})] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_{1}, x_{2}) \exp(-i2\pi f_{1}x_{1}) \exp(-j2\pi f_{2}x_{2}) dx_{1} dx_{2}$$
(2)

It applies two imaginary units i and j, each equal sqr(-1) in comparison to a single unit j in (1). Let us remind that the Fourier Cartesian frequency plane $f = (f_1, f_2)$ consists of four quadrants depicted in Fig.1. The multiplication of the spectrum $U(f_1, f_2)$ with the operator

Fig.1. The four quadrants of the plane (f_1, f_2)

 $[1 + \text{sgn}(f_1)] [1 + \text{sgn}(f_2)]$ yields the single-quadrant spectrum of the analytic signal with the support in the first quadrant. The inverse Fourier transform of this spectrum yields the following form of the analytic signal [1], [2]

 $\psi_1(x_1, x_2) = u(x_1, x_2) - v(x_1, x_2) + j[v_1(x_1, x_2) + v_2(x_1, x_2)] = A_1(x_1, x_2) \exp[\Phi_1(x_1, x_2)]$ (3) Similarly, the multiplication with the operator $[1 + \operatorname{sgn}(f_1)] [1 - \operatorname{sgn}(f_2)]$ yields a singlequadrant spectrum with the support in the third quadrant. The inverse transform yields the analytic signal

 $\psi_3(x_1, x_2) = u(x_1, x_2) + v(x_1, x_2) + j[v_1(x_1, x_2) - v_2(x_1, x_2)] = A_2(x_1, x_2) \exp[\Phi_2(x_1, x_2)]$ (4) which differs from ψ_1 only by signs. Here the function $v(x_1, x_2)$ is the total Hilbert transform of $u(x_1, x_2)$. The functions $v_1(x_1, x_2)$ and $v_2(x_1, x_2)$ are partial Hilbert transforms with respect to x_1 or x_2 (see Appendix). Due to the Hermitian symmetry of the Fourier spectrum $U(f_1, f_2)$ the real signal can be reconstructed from the half-plane spectrum, for example the half-plane $f_1 >$ 0. The reconstruction formula is

$$u(x_1, x_2) = 0.5[A_1 \cos(\Phi_1) + A_2 \cos(\Phi_2)]$$
(5)

We observe, that the real signal $u(x_1, x_2)$ should be reconstructed from the sum of two analytic signals $\psi_1(x_1, x_2) + \psi_3(x_1, x_2)$. It is so, since the two amplitudes and phase functions are different. They are given by the formulae

$$A_{1} = \sqrt{u^{2} + v^{2} + v_{1}^{2} + v_{2}^{2} + 2(v_{1}v_{2} - uv)} \quad ; \quad A_{2} = \sqrt{u^{2} + v^{2} + v_{1}^{2} + v_{2}^{2} - 2(v_{1}v_{2} - uv)} \tag{6}$$

$$\tan(\Phi_1) = \frac{v_1 + v_2}{u - v} \quad ; \quad \tan(\Phi_2) = \frac{v_1 - v_2}{u + v}, \quad (7)$$

that is,

$$\boldsymbol{\Phi}_{1} = \operatorname{Arctg}\left(\frac{v_{1}+v_{2}}{u-v}\right) \qquad ; \qquad \boldsymbol{\Phi}_{1} = \operatorname{Arctg}\left(\frac{v_{1}+v_{2}}{u-v}\right) \tag{8}$$

The notation by capital A indicates the multi-branch character of the arctg function. We observe, that the amplitudes A₁ and A₂ differ by the factor $2(v_1v_2 - uv)$. The energies of the analytic signals $\psi_1(x_1, x_2)$ and $\psi_3(x_1, x_2)$ are given by the formulae

$$E_{1} = \int_{\infty}^{\infty} \int_{\infty}^{\infty} A_{1}^{2} dx_{1} dx_{2} \quad ; \quad E_{3} = \int_{\infty}^{\infty} \int_{\infty}^{\infty} A_{2}^{2} dx_{1} dx_{2}$$
(9)

Evidently, the energy difference is given by the formula [4]

$$\Delta E = E_1 - E_3 = 4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (v_1 v_2 - uv) dx_1 dx_2$$
(10)

Let us introduce the notion of NED- the Normalized Energy Difference given by the equation

$$NED = \Delta E / (E_1 + E_2) \tag{11}$$

Separable 2-D signals

A separable 2-D signal has the form of a product of 1-D signals, that is, $u(x_1, x_2) = f_1(x_1) f_2(x_2)$. For separable signals the factor $2(v_1v_2 - uv)$ equals zero. Therefore, both amplitudes are equal and given by

$$A = A_1 = A_2 = \sqrt{u^2 + v^2 + v_1^2 + v_2^2}$$
(12)

and the corresponding analytic signals are also separable:

$$\psi_1(x_1, x_2) = \operatorname{Aexp}\{j[\varphi_1(x_1) + \varphi_2(x_2)]\}$$
(13)

$$\psi_3(x_1, x_2) = \operatorname{Aexp}\{j[\varphi_1(x_1) - \varphi_2(x_2)]\},$$
(14)

that is, the phase functions (8) have the form

$$\Phi_1(x_1, x_2) = \varphi_1(x_1) + \varphi_2(x_2) \qquad ; \qquad \Phi_2(x_1, x_2) = \varphi_1(x_1) - \varphi_2(x_2) \tag{15}$$

where $\varphi_1(x_1) = \operatorname{Tan}^{-1}(g_1/f_1)$ and $\varphi_2(x_2) = \operatorname{Tan}^{-1}(g_2/f_2)$, g_1 , g_2 are the 1-D Hilbert transforms of f_1, f_2 . Of course, due to the Parseval's theorem for separable signals the spectral energy in all quadrants of the Fourier plane is the same.

The quaternionic complex signal

The quaternionic complex signal is defined [3] by the inverse quaternionic Fourier transform of the quaternionic spectrum in the first quadrant and given by the formula

$$\psi_{q}(x_{1}, x_{2}) = u + iv_{1} + jv_{2} + kv$$
; ij=k (16)

and in the polar form by

$$\psi_{q}(x_{1}, x_{2}) = A_{q} \exp(i\phi_{1}) \exp(j\phi_{2}) \exp(k\phi_{k}), \qquad (17)$$

that is, by a single amplitude given by (12) and three phase functions given by the equations

$$\tan(2\phi_{i}) = \frac{2(uv_{1} + vv_{2})}{u^{2} - v_{1}^{2} + v_{2}^{2} - v^{2}} \quad ; \quad \tan(2\phi_{j}) = \frac{2(uv_{2} + vv_{1})}{u^{2} + v_{1}^{2} - v_{2}^{2} - v^{2}} \tag{18}$$

$$\sin(2\phi_{k}) = \frac{2(uv - v_{1}v_{2})}{A_{q}^{2}}$$
(19)

Therefore,

$$\phi_{i} = 0.5 \operatorname{Atan} \left[\frac{2(uv_{1} + vv_{2})}{u^{2} - v_{1}^{2} + v_{2}^{2} - v^{2}} \right] \quad ; \quad \phi_{j} = 0.5 \operatorname{Atan} \left[\frac{2(uv_{2} + vv_{1})}{u^{2} + v_{1}^{2} - v_{2}^{2} - v^{2}} \right]$$
(20)

$$\phi_{k} = 0.5 \operatorname{Arcsin}\left[\frac{2(uv - v_{1}v_{2})}{A_{q}^{2}}\right]$$
(21)

Derivation of the relations between the phase angles of the analytic signals and quaternionic complex signals.

The insertion of the Eq.(19) in (6) yields the relations between the amplitudes:

$$A_1 = A_q \sqrt{1 + \sin(2\phi_k)}$$
; $A_2 = A_q \sqrt{1 - \sin(2\phi_k)}$ (22)

Therefore,

$$A_{q} = \sqrt{\frac{A_{1}^{2} + A_{2}^{2}}{2}}$$
(23)

$$\sin(2\phi_k) = \frac{A_1^2 - A_2^2}{A_1^2 + A_2^2} \qquad ; \qquad \phi_k = 0.5 \arcsin\left(\frac{A_1^2 - A_2^2}{A_1^2 + A_2^2}\right) \qquad (24)$$

The above formula shows, that the angle $\phi_k \in (-\pi/4, \pi/4)$ and the values $\pm \pi/4$ occur only, if A₁ or A₂ equal zero. For natural images the probability that one of the amplitudes vanishes is very small. The addition of the tangent functions given by (18) yields

$$2(uv_1 + vv_2) = (u^2 - v^2)[\tan(\Phi_1) + \tan(\Phi_2)]$$
(25)

and the subtraction

$$2(uv_{2} + vv_{1}) = (u^{2} - v^{2})[\tan(\varPhi_{1}) - \tan(\varPhi_{2})]$$
(26)

Therefore, the phase functions of the quaternionic complex signal are related to the phase functions Φ_1 and Φ_2 by the equations

$$\tan(2\phi_{i}) = \left[\tan(\Phi_{1}) + \tan(\Phi_{2})\right] \frac{1}{1 + (v_{2}^{2} - v_{1}^{2})/(u^{2} - v^{2})} = \tan(\Phi_{1} + \Phi_{2})$$
(27)

$$\tan(2\phi_{j}) = \left[\tan(\Phi_{1}) - \tan(\Phi_{2})\right] \frac{1}{1 - (v_{2}^{2} - v_{1}^{2})/(u^{2} - v^{2})} = \tan(\Phi_{1} - \Phi_{2})$$
(28)

and we get the simple relations

$$\phi_1 = 0.5(\Phi_1 + \Phi_2)$$
; $\phi_1 = 0.5(\Phi_1 - \Phi_2)$ (29)

The energy difference defined by the Eq.(10) may be written using the Eq.(19) in the form

$$\Delta E = 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_q^2 \sin(2\phi_k) dx_1 dx_2$$
(30)

For separable signals or for signals with circular symmetry ϕ_k equals zero and $\Delta E = 0$. Let us mention, that separability is relative in respect to the rotation of the coordinate system. A signal separable in a non-rotated coordinate system may be non-separable in the rotated system. For separable signals the phase functions given by Eq.(29) take the form

$$\phi_1 = \varphi_1 ; \qquad \phi_j = \varphi_j , \qquad \phi_k = 0 \tag{31}$$

For quaternionic signals the reconstruction formula (see Eq.5) nas the form

$$u(x_1, x_2) = A_q[\cos(\phi_1)\cos(\phi_2)\cos(\phi_k) - \sin(\phi_1)\sin(\phi_2)\sin(\phi_k)$$
(31)

Example 1

Consider a real signal in the form of a product of two cosine functions

$$u(x_1, x_2) = \cos(2\pi f_1 x_1) \cos(2\pi f_2 x_2)$$
(32)

The corresponding analytic signal defined by the Eq.(3) is (33)

$$\psi_1(x_1, x_2) = \exp[j2\pi(f_1x_1 + f_2x_2)] = \exp(j\phi_1)\exp(j\phi_2)$$
(34)

Evidently, $\varphi_1 = 2\pi f_1 x_1 + 2\pi f_2 x_2$ and $\varphi_2 = 2\pi f_1 x_1 - 2\pi f_2 x_2$. We have $A = A_q = 1$, $\phi_i = 2\pi f_1 x_1$, $\phi_j = 2\pi f_2 x_2$ and of course $\phi_k = 0$. The phase functions are displayed in Fig.1.

Fig.1a. The phase functions of the analytic signal: Left Φ_1 , right Φ_2 .

Fig.1b.The quaternionic phase functions: Left ϕ_i , right ϕ_j .

Example 2

Consider the 2-D complex delta distribution [5]

$$\psi_{\delta}(x_1, x_2) = [\delta(x_1) + j(1/(\pi x_1))] \otimes [\delta(x_2) + j(1/(\pi x_2))]$$
(35)

where \otimes denotes the tensor product of distributions. Let us omit this symbol in next notations. The local amplitude has the form

$$A_{\delta}(x_1, x_2) = 1/(\pi^2 |x_1| |x_2|)$$
(36)

And the phase functions are

$$\Phi(\mathbf{x}_1, \mathbf{x}_2) = \varphi_1(\mathbf{x}_1) + \varphi_2(\mathbf{x}_2) = 0.5\pi \operatorname{sgn}(x_1) + 0.5\pi \operatorname{sgn}(x_2)$$
(37)

Let us remind, that the 2-D analytic signal (3) may be written in the convolution form

$$\psi_1(x_1, x_2) = u(x_1, x_2) * \psi_\delta(x_1, x_2)$$
(38)

Let us define the quaternionic complex delta distribution

$$\psi_{\delta q}(x_1, x_2) = \delta(x_1, x_2) + i\delta(x_2)/(\pi x_1) + j\delta(x_1)/(\pi x_2) + k[1/(\pi^2 x_1 x_2)]$$
(39)

The local amplitude is given by the Eq.(36), and the phase functions are

$$\phi_1(\mathbf{x}_1, \mathbf{x}_2) = \varphi_1(\mathbf{x}_1) = 0.5\pi \text{sgn}(\mathbf{x}_1) \quad ; \quad \phi_2(\mathbf{x}_1, \mathbf{x}_2) = \varphi_2(\mathbf{x}_2) = 0.5\pi \text{sgn}(\mathbf{x}_2) \tag{40}$$

Analogously to (38), the quaternionic complex signal (16) may be written in the convolution form

$$\psi_{q}(x_{1}, x_{2}) = u(x_{1}, x_{2}) * \psi_{\delta q}(x_{1}, x_{2})$$
(41)

Example 3

This example is illustrated only by images.

Original image

The amplitude A_1 of the analytic signal ψ_1

The amplitude A_2 of the analytic signal ψ_3

The phase function Φ_1 of the analytic signal ψ_1

The phase function Φ_2 of the analytic signal ψ_3

The quaternionic amplitude A_q

The quaternionic phase $\phi_1 = 0.5(\Phi_1 + \Phi_2)$

Reconstruction from analytic signals, Eq.(6)

The quaternionic phase ϕ_k

The quaternionic phase $\phi_1 = 0.5(\Phi_1 - \Phi_2)$

Quaternionic reconstruction, Eq.(31)

The original signal is non-separable. In consequence the quaternionic phase ϕ_k (see Eq.24) differs from zero. However, the quaternionic amplitude A_q (see Eq.(23)) does not differ much from the two amplitudes A_1 and A_2 of the analytic signals ψ_1 and ψ_3 . Remark: The phase jumps of the presented phase functions are not removed

Conclusion

A real signal may be represented by two analytic signals, that is by two amplitudes and two phase functions or alternatively by a single quaternionic complex signal, that is, by a single amplitude and three phase functions. We derived very simple formulae relating the quaternionic and analytic representations of the above amplitude and phase functions.

References

- Hahn S.L., Multidimensional complex signals with single-orthant spectra, Proc.IEEE, vol.80, No.8, August 1992, pp.1287-1300.
- [2] Hahn S.L. Hilbert Transforms in Signal Processing, Artech House, 1996.
- [3] Bülow T., Hypercomplex spectral signal representation for the processing and analysis of images, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel, Bericht Nr.9903, August 1999.
- [4] Hahn S.L., Buchowicz A., Wigner-Ville distributions of complex multidimensional analytic signals, A paper delivered on 21 May 1997 to the Editor of the Proc.IEEE, not accepted for publication In this paper the authors introduced the notion of NED.
- [5] Hahn S.L., The *N*-Dimensional Complex Delta Distribution, IEEE Trans.on Signal Processing, vol.44, NO.7, July 1996, pp.1833-1837.

Appendix

Consider a 2-D real signal $u(x_1, x_2)$. Its total Hilbert transform is defined by the integral

$$v(x_1, x_2) = H[u(x_1, x_2)] = \frac{1}{\pi^2} P \int_{-\infty-\infty}^{\infty} \frac{u(\eta_1, \eta_2) d\eta_1 d\eta_2}{(\eta_1 - x_1)(\eta_2 - x_2)}$$
(A1)

where P denotes the Cauchy principal value of the inegral. The partial Hilbert transform in respect to the variable x_1 is defined by the integral

$$v_1(x_1, x_2) = H_1[u(x_1, x_2)] = -\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{u(\eta_1, x_2)}{\eta_1 - x_1} d\eta_1$$
(A2)

and in respect to the variable x_2 by the integral

$$v_{2}(x_{1}, x_{2}) = H_{2}[u(x_{1}, x_{2})] = -\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{u(x_{1}, \eta_{2})}{\eta_{2} - x_{2}} d\eta_{2}$$
(A3)