
 

 

 

 

 

Report No. 1, 2011 

Quasi-analytic Multidimensional Signals 

Stefan L. Hahn and Kajetana M. Snopek 

 

 

 

 

 

 

 

 

 

 

 

 

Warsaw, November 2011
 

 

 

Institute of Radioelectronics, Nowowiejska 15/19, 00-665 Warsaw, tel./fax: (4822) 8255248 

e-mail: S.Hahn@ire.pw.edu.pl. K.Snopek@ire.pw.edu.pl 

WARSAW UNIVERSITY OF TECHNOLOGY 

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY 

INSTITUTE OF RADIOELECTRONICS 

 

mailto:S.Hahn@ire.pw.edu.pl
mailto:K.Snopek@ire.pw.edu.pl


 

 

 

Quasi-analytic Multidimensional Signals 

Stefan L. Hahn and Kajetana M. Snopek 

 

Abstract: In a recent paper [1], the authors presented the unified theory of n-D complex and hypercomplex 

analytic signals with single-orthant spectra. This paper describes a specific form of these signals called quasi-

analytic. A quasi-analytic signal is a product of a low-pass (base-band) real (in general non-separable) signal and 

a n-D complex or hypercomplex carrier (modulation). By a suitable choice of a carrier frequency, the spectrum is 

shifted into a single orthant of the Fourier frequency space with a negligible leakage in other orthants. A measure 

of this leakage is defined. Properties of quasi-analytic signals are presented. In implementations, Hilbert filters 

are replaced by modulators. Problems of polar representation of quasi-analytic signals and of its lower rank 

representation are presented.  

 

1 Introduction 

 

Multidimensional analytic signals with single-orthant spectra have been introduced in 

[2] and described in [3] and [4]. A unified theory of complex and hypercomplex analytic 

signals with single-orthant spectra has recently been presented in [1]. Here, we describe 

specific implementations of analytic signals in the form of quasi-analytic signals. Let us 

remind the basic definition of analytic signals with single-orthant spectra. Consider a real n-D 

signal g(x),  1 2, ,..., n

nx x x x  and its n-D complex or hypercomplex Fourier transform 

   g Gx f
F

,  1 2, ,..., nf f ff . The multiplication of the spectrum G(f) by a n-D unit-step 

1(f) yields a single-orthant spectrum in the first orthant of the frequency space n
, i.e., in +

. 

The n-D complex or hypercomplex analytic signal is defined by the complex or hypercomplex 

inverse Fourier transform : 

 1(x) = Inverse Fourier Transform of {1(f) G(f)}. (1) 

The quasi-analytic signal  is defined by the formula 

     1 10 1 2 20 2 02 2 2

1
n n ne f x e f x e f x

g e e e
    x x , (2) 

i.e., the real signal g(x) is multiplied by a multidimensional carrier. The spectrum is shifted 

into the first orthant having the form  

    1 10 2 20 0s n nG G f f f f f f   f , , ..., . (3) 

The all carrier frequencies fi0 should be positive constants and enable the effective shift of the 

spectrum in the first orthant. The shifted spectrum should have a negligible leakage of its 



support outside the first orthant. A measure of the leakage is represented by the coefficient  

defined by the equation 

 

2

2
1

sG d

G d




 




n

f

f
 = 

Energy of the signal in the first orthan t
1

Total energy of the signal
 . (4) 

For quasi-analytic signals 0 . If the support of the spectrum G(f) is finite, it is possible to 

get  = 0. Note that by an appropriate change of a sign of carrier frequencies fi0 we can define 

quasi-analytic signals with spectra in other orthants of the frequency space. The signal (2) is 

called complex if all basis vectors are the same (usual notation j) with j
2
 = -1. The form of 

hypercomplex signals is defined by te choice of the algebra of basis vectors [1].  

 

2 2-D complex quasi-analytic signals 

 

Let us illustrate the notion of a 2-D complex quasi-analytic signal with two examples of 

low-pass real signals: the 2-D  Gaussian one and a rotated cuboid. The 2-D Gaussian signal 

(normalized form) has the form 

  
     

 

2 2

1 1 2 2 1 2 1 1

2 1 22

1 2

/ / 2 /1
, exp

2 12 1

x x x x
g x x

    

  

  
  

   

. (5) 

It is a nonseparable function of variables (x1, x2). If  = 0, it is a separable function 

     1 2 1 1 2 2, .g x x g x g x  Generally, a 2-D signal is a union of four terms with different even-

odd parity. However, low-pass signals are unions of only two terms: 

     1 2 1 2 1 2, , ,ee oog x x g x x g x x  , where  “ee” denotes an even-even term and “oo” an odd-odd 

term w.r.t. variables (x1, x2). If  = 0, the odd-odd term vanishes. The Fourier spectrum of (5) 

is ( 2i if  ) : 

        2 2 2 2

1 2 1 1 2 2 1 2 1 2 1 2 1 2, exp 0.5 2 , ,ee ooG f f G f f G f f            
 

 (6) 

where 

      2 2 2 2

1 2 1 1 2 2 1 2 1 2, exp 0.5 cosheeG f f           
 

, (7) 

      2 2 2 2

1 2 1 1 2 2 1 2 1 2, exp 0.5 sinhooG f f           
 

. (8) 



Let us present some specific examples of Gaussian spectra. Fig. 1a shows the low-pass 

spectrum for 1 = 2 = 0.5 and  = 0. The spectrum of the quasi-analytic signal shifted by 

modulation into the first quadrant (f1 > 0, f2 > 0).is shown in Fig. 1b. 

 

 (a) (b) 

Fig. 1 (a) The Gaussian signal 1 = 2 = 0.5,   = 0,  1 2, eeG f f G , (b) The shifted  spectrum of (a), 

 1 21.25, 1.25G f f  , no leakage,  0.00000 

 

 (a) (b) 

Fig. 2 (a) The Gaussian signal 1 = 2 = 0.7,   = 0.9,  1 2, ee ooG f f G G  , (b) The shifted  spectrum of (a), 

 1 21.25, 1.25G f f  , negligible leakage,  =0.00054 

 

Fig. 2a shows the spectrum with 1 = 2 = 0.7,   = 0.9 (nonseparable case). The even-even 

and odd-odd terms are displayed in Figs 3a,b. Fig. 4 a,b shows the same spectra shifted into 

the first quadrant.  



 

 (a) (b) 

Fig. 3 (a) The even-even part of the spectrum of Fig.2a, (b) The odd-odd part of the spectrum of Fig.2a 

 

 (a) (b) 

Fig. 4 (a) The even-even part of the spectrum of Fig.2a shifted into the 1
st
 quadrant, (b) The odd-odd part of the 

spectrum of Fig.2a shifted into the 1
st
 quadrant 

 

 Note that energies of low-pass signals in the non-separable case (Fig.2a) are different 

in the 1
st
 quadrant (f1 > 0, f2 > 0) and in the 3

rd
 quadrant (f1 > 0, f2 < 0). In consequence, the 

inverse Fourier transform of these two single-quadrant spectra define two different analytic 

signals: 

               1

1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 1 2x x f f G f f g x x v x x e v x x v x x        1, , , , , , ,F  (9) 

               1

3 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 1 2x x f f G f f g x x v x x e v x x v x x         1, , , , , , ,F  (10) 

Notations:  1 2,g x x is a real signal,  1 2,v x x  - the total (w.r.t. both variables) Hilbert 

transform of u,  1 1 2,v x x - the partial Hilbert transform w.r.t. x1 and  2 1 2,v x x  the partial 

Hilbert transform w.r.t. x2.  

The 2-D quasi-analytic signal has the form  



     1 10 1 202 2

1 1 2 1 2, ,
e f e f

x x g x x e e
   . (11) 

The developed form of (11) is 

      1 1 2 1 2 1 2 1 2 1 1 2 2 1 1, Re Imx x g x x c c s s e s c s c e          (12) 

where     0cos , =sin , 2i i i i i i ic s f x     . 

Let us present the next example using a rotated cuboid (see Appendix A). The support 

of this signal is displayed in Fig. 5a and its spectrum in Figs 5b and c. The spectrum of the 

quasi-analytic signal shifted into the 1
st
 quadrant is shown in Figs 6a and b. Due to the sharp 

edges of the cuboid, the oscillatory spectrum has a finite leakage into other quadrants with  

 = 0.013. 

 

 (a) (b) 

 

(c) 

Fig. 5 (a) The support of a rotated cuboid, (b) The spectrum of the cuboid of (a), (c) The 3-D view to the 

spectrum of Fig.5b 



  

 (a) (b) 

Fig. 6 (a) The spectrum of the quasi-analytic signal of the rotated cuboid, (b) The 3-D view to the shifted 

spectrum of the rotated cuboid 

 

3 Polar representation of 2-D complex quasi-analytic signals 

 

The polar forms of complex analytic signals (9) and (10) define two different 

amplitudes and two different phase functions. However, if  1 2,g x x  is a separable function, 

we have a single amplitude and two phase functions, the first one is    1 1 1 2 2x x     and 

the second    2 1 1 2 2x x    . Let us remind that polar forms of analytic signals are 

uniquely defined. Therefore, by defining the polar forms of quasi-analytic signals we should 

recall that they are analytic only approximately, if  << 1. Since the quasi-analytic signals are 

separable functions, we have a single amplitude and two phase functions. 

The polar representation of (11) is 

          1 1 2 1 1 2, ,

1 1 2 1 2 1 2, , ,
e x x e x x

x x A x x e g x x e
 

   . (13) 

The local amplitude of (13) is 

    2 2

1 2 1 1 1 2, Re Im ,A x x g x x      (14) 

and the phase  

    1 2

Im
tan tg tg

Re
  

 
   

 
, (15) 

i.e., as expected,  = 1 +2. Note that (13) differs from (11) since  1 2,g x x  is replaced by 

the absolute value. For unipolar positive baseband functions they are equal. The derivation of 

(15) is presented only for formal reasons, since the phase functions of (11) and (13) are the 

same. The Hilbert transforms of    1 2 1 2 1 2, ,u x x g x x c c  have the form  



   1 2 1 2 1 2, ,v x x g x x s s ,    1 1 2 1 2 1 2, ,v x x g x x s c  and    2 1 2 1 2 1 2, ,v x x g x x c s . Notations: 

 1 10 1cos 2c f x ,  2 20 2cos 2c f x ,  1 10 1sin 2s f x  and  2 20 2sin 2s f x . We observe 

that the  transforms are obtained using    cos sini iH     .  

 

4. 2-D quaternionic quasi-analytic signals 

 

Differently to the real spectrum of the real signal g(x1, x2), e.g. given by (6), the 

corresponding quaternionic spectrum is a complex function: 

      1 2 1 2 3 1 3, , ,q ee ooG f f G f f e G f f  . (16) 

In consequence, if both terms of the spectra exist, the even-even and odd-odd terms of (16) 

should be shifted into the first quadrant separately. The quaternionic quasi-analytic signal has 

the form 

     1 1 2 2

1 1 2 1 2, ,
e e

q x x g x x e e
   , (17) 

i.e., in comparison to (11) in the second exponent e1 is replaced by e2. The developed form of 

(17) is 

       1 2 1 2 1 2 1 1 2 2 1 2 3 1 2, ,q x x g x x c c e s c e c s e s s     . (18) 

 

5.  Polar representation of 2-D quaternionic quasi-analytic signals 

 

The polar representation of the quaternion derived in [5] has the form 

   3 31 1 2 2

1 2,
ee e

q x x Ae e e
   . (19) 

The amplitude is  

    1 2 1 2, ,A x x g x x    (20) 

i.e., equals (14), and the three phase functions (Euler angles) are 

  
   

 
 1 2 11 2 1 2 1 2 1 2

1 12 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1

2 2 tan
tan 2 2 tan 2

1 tan

uv vv c c s c s s c s

u v v v c c s c c s s s


 



 
   

      
, (21) 

  
   

 
 2 1 21 2 1 2 1 2 1 2

2 22 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 2

2 2 tan
tan 2 2 tan 2

1 tan

uv vv c c c s s c s s

u v v v c c s c c s s s


 



 
   

      
, (22) 

   1 2 1 2 1 2 1 2 1 2
3 2 2

sin 0
uv v v c c s s s c c s

A A


 
   . (23) 



Therefore, 1 1 2 2 3 ; and 0.        We have  

     1 10 1 2 20 22 2

1 2 1 2, ,
e f x e f x

q x x g x x e e
   . (24) 

Similarly to the complex case, we have only two Euler angles. This could be derived directly 

by comparison of (17) and (24). 

 

6 Lower rank 2-D signals 

 

Lower rank 2-D signals have been defined in [1] in the form of a union of two signals 

with single-quadrant spectra in the first and third quadrant, i.e., with the spectrum defned in 

the half plane f1 > 0. The rank-1 signals are 

 
      11 31 3

1 2 1 2 1 1 1 2, , ,
2 2

eq q

HS x x u x x e v x x Ae 
  




     , (25) 

i.e. the rank-1 2-D signals have the same form for complex and hypercomplex (quaternionic) 

signals. Their amplitude is    2 2

1 2 2Re Im , cosA g x x     and the phase is  

 1 2 1,x x  . 

 

7 3-D complex quasi-analytic signals. 

 

Similarly to the 2-D case, a 3-D quasi-analytic signal is defined by the inverse Fourier 

transform of a low-pass spectrum of a real signal shifted into a single octant. The complex 

quasi-analytic signal with single octant spectrum in the first octant has the form 

     1 31 1 1 2

1 1 2 3 1 2 3, , , ,
ee e

x x x g x x x e e e
   , (26) 

i = 2fi0xi  and  fi0 are three shift frequencies of the carrier. The developed form of (26) is 

       1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3, , , ,x x x g x x x c c c s s c s c s c s s e s c c c s c c c s s s s         (27) 

where ci = cos(i) and si = sin(i). Let us remind that the Hilbert transforms are calculated 

using si = H(ci). Consider the example with a 3-D nonseparable Gaussian signal 

(corresponding formulae are given in Appendix B). This signal is defined by three variances 

1 , 2 , 3 and three correlation coefficients 12, 13, 23. A specific example of the Gaussian 

low-pass spectrum is shown in Fig. 7a. Fig. 7b shows the cross-section of the spectrum of 

Fig.5a shifted into the first octant (Remark: we present only a chosen cross-section of a 3-D 

spectrum). 



 

Fig. 7 (a) The cross-section G(f1, f2, f3=0) of the spectrum of a Gaussian 3-D signal 1 = 2 = 3 = 0.7, 12 = 13 = 

23 = 0.9. No shift (b) The shifted spectrum of (a), G(f1-1.25, f2-1.25, f3=0). Leakage  = 0.0000. 

 

Let us recall that a 3-D signal may be represented as a sum of 8 terms with different 

parity (even/odd). However, low-pass real signals are unions of only four terms [1]: 

 
 1 2 3 eee eoo oeo ooe, ,g x x x g g g g    ;       1 2 3 eee eoo oeo ooe, ,G f f f G G G G    .

 
(28) 

First, let us compare the 3-D analytic signals with quasi-analytic signals. In the half-space  

f1 > 0 we have four octants labbelled 1, 3, 5 and 7. Their energies may differ. In consequence, 

a real signal g is represented by four different analytic signals with single-octant spectra 

denoted 1 , 3 , 5 and 7 of different energies. For example, the signal 1 has the form 

    1 1 2 3 12 13 23 1 1 2 3, ,x x x g v v v e v v v v         . (29) 

Notations are similar as in the 2-D case: vi denotes partial  Hilbert transforms of g w.r.t. a 

single variable and vij w.r.t. two variables. The signals 3, 5 and 7 differ only by signs (see 

[2], [3], [4] ). However, the four quasi-analytic signals defined (26) differ for other octants 

only by the signs of the angles in the exponents. All have the same amplitude and the same 

energies. 

 

8 Polar representation of 3-D complex  quasi-analytic signals 

 

The polar form of four complex analytic signal defines four amplitudes and four phase 

functions. For separable signals all four amplitudes are equal and the four phase functions are 

      1 1 1 2 2 3 3x x x      ,             3 1 1 2 2 3 3x x x      , (30) 

      5 1 1 2 2 3 3x x x      ,             7 1 1 2 2 3 3x x x       (31) 

and  the amplitude  



    2 2

1 2 3 1 1 1 2 3, , Re Im , ,A x x x g x x x       (32) 

The phase function of 1 is 

   1 2 3 1 2 3 1 2 3 1 2 3
1

1 2 3 1 2 3 1 2 3 1 2 3

Im
tan tg

Re

s c c c s c c c s s s s

c c c s s c s c s c s s


   
   

   
 1 2 3tg     . (33) 

 

9 3-D hypercomplex quasi-analytic signals 

9.1 Cayley-Dickson algebra 

 

The 3-D quasi-analytic hypercomplex signal defined by the Cayley-Dickson algebra of 

unit vectors (see Appendix C) is  

     4 31 1 2 2

1 2 3 1 2 3, , , ,
ee e

CD x x x g x x x e e e
    (34) 

 where again i= 2fi0xi. Note the order e1, e2, e4. The developed form of (34) is 

 
 

  

1 2 3

1 2 3 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3 4 1 2 3 5 1 2 3 6 1 2 3 6 1 2 3

, ,

, ,

CD x x x

g x x x c c c e s c c e c s c e s s c e c c s e s c s e c s s e s s s



        (35) 

Remark: The sign of e7 depends on the order of multiplication.  

 

9.2 Clifford algebra 

The 3-D quasi-analytic signal defined by the Clifford algebra of unit vectors (see 

Appendix D) is  

     3 31 1 2 2

1 2 3 1 2 3, , , ,
ee e

CD x x x g x x x e e e
    (36) 

In comparison to (34) the order is e1, e2, e3 The developed form of (31) is 

 
     

    

1 2 3 1 2 3 1 2 3 1 1 2 3 2 1 2 3 1 2 1 2 3 3 1 2 3

1 3 1 2 3 2 3 1 2 3 1 2 3

, , , ,

                        

Cl x x x g x x x c c c e s c c e c s c e e s s c e c c s

e e s c s e e c s s s s s





    

  
 (37) 

Assuming that the amplitude should be an unipolar positive function, the polar form of (37) is 

undefined, since   2 2 2 2

1 2 3 1 2 3, , 1 2Cl Cl g x x x s s s      is a bipolar function. This is caused by 

the fact that in the Clifford algebra (see Appndix D) 2 
= +1 and not –1. 

 

10 Polar representation of 3-D hypercomplex quasi-analytic signals 

 

The problem of the polar representation of 3-D hypercomplex analytic signals has been 

discussed in [1]. In principle, the 3-D hypercomplex signal with single-octant spectrum is 



represented by a single amplitude and seven phase functions. However, if the signal is a 

separable function, we have only three phase functions. Since quasi-analyic signals are 

separable functions, the signal (34) is represented by three phase functions. Its amplitude is 

    1 2 3 1 2 3, , , ,CD CDA x x x g x x x     (38) 

and the three phase angles, as shown in [1], are 1, 2, 3. Therefore, 

     4 31 1 2 2

1 2 3 1 2 3, , , ,
ee e

CD x x x g x x x e e e
   . (39) 

Conclusion: From the point of view of the polar representation, the 2-D and 3-D quasi-

analytic signals of non-separable low-pass signals have the analogous polar representation as 

separable functions: We have a single amplitude and two (in 2-D) or three (in 3-D) phase 

functions. 

 

10.1 Lower rank 3-D signals 

 

The above described 3-D signals have the rank 3. Let us derive the formulae for the 

signals of rank 2. 

a) Complex case 

The complex signal (26) has the spectral support in the first octant. Let us write signals 

with spectral supports in the octants No. 3, 5 and 7: 1 31 1 1 2

3

ee e
ge e e

  
 , 1 31 1 1 2

3

ee e
ge e e

  
  

and 1 31 1 1 2

3

ee e
ge e e

  
 . The signals of rank 2 are 

     1 1 51 1 1 21 5
1 5 1 2 3 3 1 5, , cos

2

ee e
x x x ge e A

  
  

 


    (40) 

     1 3 71 1 1 23 7
3 7 1 2 3 3 3 7, , cos

2

ee e
x x x ge e A

  
  

 


    (41) 

The amplitudes are the same:  1 5 3 7 3cosA A g     and the phase functions are 

1 5 1 2     , 3 7 1 2     . The rank-1 signal with the support of its spectrum in the half 

space f1 > 0 is 

      
1 1

11 5 3 7
1 2 3 2 3, , cos cos

2

e
HSe

HS HSx x x g e A e
  

   
   . (42) 

Its amplitude    2 3cos cosHSA g    and the phase function is HS = 1. 

 

 

 



b) Octonion case (Cayley-Dickson algebra) 

The hypercomplex signal (39) has the spectral support in the first octant. Let us write 

signals with spectral supports in the octants No. 3, 5 and 7: 4 31 1 2 2

3

ee e
ge e e

  
 , 

4 31 1 2 2

3

ee e
ge e e

  
  and 4 31 1 2 2

3

ee e
ge e e

  
 . The signals of rank 2 are 

    
   1 2

1 1 5 2 1 51 1 2 21 5
1 5 1 2 3 3 1 5, , cos

2

e ee e
x x x ge e A e

   
   

 


   , (43) 

    
   1 2

1 3 7 2 3 71 1 2 23 7
3 7 1 2 3 3 3 7, , cos

2

e ee e
x x x ge e A e

   
   

 


   . (44) 

The amplitudes are the same as in (41) and (43) an the phase functions expressed by Euler 

angles given by (21) and (22) are 
     1 1

1 5 1 2 3 3 7 1, .x x x     , 
     2 2

1 5 1 2 3 3 7 2, .x x x      . Of 

course, the phase angles are defined directly by the comparison of exponents in (43) and (44). 

However, using the Euler angles (21)-(23) we can show that the same formulae apply for 

quaternions with 3-D terms. The rank-1 signals are again the same for complex and octonic 

signals. We have 

       11 11 5 3 7
1 2 3 2 3, , cos cos

2
HSee

HS HSx x x g e A e
 

   
   . (45) 

The amplitude is    2 3cos cosHSA g    and the  phase 1HS  . 

 

11 Conclusions 

 

Quasi-analytic signals with single-orthant spectra are defined by multplication of a low-

pass (baseband) nonseparable n-D signal g(x1, x2,…,xn) by a muldimimensional carrier. This 

operation should shift the low-pass spectrum of g into a single-orthant. The leakage of the 

energy of the modulated signal in other orthants of the frequency space should be negligible. 

The modulating carrier can be complex or hypercomplex. The paper presents details of this 

method for 2-D and 3-D signals. 
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Appendix A The spectrum of a rotated cuboid 

The spectrum of the cuboid is well known. For convenience, let us recall the definition 

of a cuboid. The symmetric cuboid (nonrotated) is defined as a product of two rectangles 

     2 1 1 2, a bg x x x x  ,   
1

1 1

1

1

0.5

0

a

if x a

x if x a

if x a



  



  ,    
1

1 1

1

1

0.5

0

a

if x a

x if x a

if x a



  



 (A1) 

The Fourier spectrum of (A1) is 

  
   1 2

2 1

1 2

sin 2 sin 2
, 2 2

2 2

f a f b
G f f a b

f a f b

 

 
  (A2) 

Of course g and G are separable 2-D functions. The rotated cuboid is defined in a coordinate 

system rotated by the angle   as 

 
   '

1 1 2cos sinx x x      ;        '

2 2 1cos sinx x x  
 

(A3) 

and is nonseparable. As well, the spectrum of the rotated cuboid is defined by rotation of the 

frequency domain coordinate system 

 
   '

1 1 2cos sinf f f      ;        '

2 2 1cos sinf f f  
 

(A4) 

and is also a nonseparable function. 

 

Appendix B  The 3-D Gaussian signal 

 

The 3-D Gaussian signal is defined by 

    
3

1 23 2

1 2 3

, 1

1
, , 2 exp

2
ij i j

i j

u x x x M M x x
M






  
  

  
  (B1) 

where 

 2 2 2 2 2 2

1 2 3 12 23 13 13 12 23 12 23 131M                  ,  2 2 2

11 23 2 31M     , 

 2 2 2

22 13 1 31M     ,  2 2 2

33 12 1 21M     ,  2

12 21 1 2 3 23 13 12M M         , 

 2

23 32 1 2 3 12 13 23M M          and  2

13 31 1 2 3 12 23 13M M         . 



The parameters 2

i , i = 1, 2, 3 are called variances and ij , i, j = 1, 2, 3, i j  are cross-

correlation factors. If all 0ij  , we have a 3-D separable Gaussian signal. The Fourier 

spectrum of (B1) is  

 

   

1 2 3

2 2 2 2 2 21
1 1 2 2 3 3 1 2 12 1 2 1 3 13 1 3 2 3 23 2 32

, ,

exp exp - .

U   

                             

(B2) 

 

Appendix C The Cayley-Dickson algebra 

 

The Cayley-Dickson multiplication rules of unit vectors are presented in Table 1. 

Details concerning the Cayley-Dickson algebra are presented in [1] or in many other sources. 

Note that the part of the table for e1, e2 and e3 presents multiplication rules of quaternions. 

 

TABLE 1 MULTIPLICATION RULES IN THE ALGEBRA OF OCTONIONS 

  1 e1 e2 e3 e4 e5 e6 e7 

1 1 e1 e2 e3 e4 e5 e6 e7 

e1 e1 -1 e3 -e2 e5 -e4 -e7 e6 

e2 e2 -e3 -1 e1 e6 e7 -e4 -e5 

e3 e3 e2 -e1 -1 e7 -e6 e5 -e4 

e4 e4 -e5 -e6 -e7 -1 e1 e2 e3 

e5 e5 e4 -e7 e6 -e1 -1 -e3 e2 

e6 e6 e7 e4 -e5 -e2 e3 -1 -e1 

e7 e7 -e6 e5 e4 -e3 -e2 e1 -1 

 

 

Appendix D The Clifford algebra  0,3Cl  

The rules of multiplication of unit vectors of the Clifford algebra  0,3Cl  are given in 

Table 2. Details can be found in [1] or in other sources. 

 

 

 

 

 



TABLE 2 MULTIPLICATION RULES IN  0,3Cl  

  1 e1 e2 e3 e1e2 e1e3 e2e3  

1 1 e1 e2 e3 e1e2 e1e3 e2e3  

e1 e1 -1 e1e2 e1e3 -e2 -e3  -e2e3 

e2 e2 -e1e2 -1 e2e3 e1 - -e3 e1e3 

e3 e3 -e1e3 -e2e3 -1 - e1 e2 e1e2 

e1e2 e1e2 e2 -e1  -1 e2e3 -e1e3 -e3 

e1e3 e1e3 e3  -e1 -e2e3 -1 e1e2 -e2 

e2e3 e2e3 - e3 -e2 e1e3 -e1e2 -1 e1 

  e2e3 -e1e3 -e1e2 e3 e2 -e1 1 

 


