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Abstract - This paper presents the frequency-domain definition of the monogenic signal. It is derived basing on the 

notion of the Quaternionic Fourier Transform.  
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I. INTRODUCTION 

 

 In a very interesting recent paper [1] the authors defined a new notion of the 2-D monogenic signal. It 

is derived using Riesz transforms called also “isotropic Hilbert transforms” [2]. Its signal-domain 

definition has the form  

       ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2, , ,M r ,rx x u x x iv x x jv x xψ = + +  (1) 

where u is a 2-D real signal,  are the corresponding Riesz transforms. They have the form of 

convolutions of u with so called Riesz kernels r

1  and rv 2rv

1 and r2 , i.e., 

( ) ( ) ( )1 1 2 1 2 1 1 2, ,  ,rv x x u x x r x x= ∗∗ ,   ( ) ( ) ( )2 1 2 1 2 2 1 2, ,  rv x x u x x r x x= ∗∗ , . (2) 

Riesz kernels and their 2-D Fourier transforms are given by the relations 

( )
2  

1 1
1 1 2 3 2 22 2

1 21 2

,
2

D FTx jr x x f
f fx xπ

− −
= ⇔

+ + 

,    ( )
2  

2 2
2 1 2 3 2 22 2

1 21 2

,
2

D FTx jr x x f
f fx xπ

− −
= ⇔

+ + 

. (3) 

In the chapter II we derive the frequency-domain definition of the monogenic signal using the inverse 

Quaternionic Fourier Transform (QFT) of a specific spectrum. The Appendix contains the definition and 

basic properties of the QFT. 
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II. THE FREQUENCY-DOMAIN DEFINITION OF THE MONOGENIC SIGNAL 

 

A real signal u can be written in the form of a union of four terms:  ( )1 2 ee oe eo oox ,x u u u u= + + +u , 

where the subscripts “e” and “o” denote evenness or oddness of a function w.r.t. the corresponding 

variable. With this decomposition the 2-D Fourier transform has the form 

( ) ( ) ( ) ( )1 1 2 2j2
1 2 1 2 f x f x

ee oe eo oo ee oo oe eoU f , f u u u u e dx dx U U j U Uπ− += + + + = − − +∫∫  (4) 

where  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 1 2cos 2 cos 2ee ee eeU f , f u x ,x f x f x dx dx U f , fπ π= ∫∫ = − , (5) 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 1 2sin 2 sin 2oo oo ooU f , f u x ,x f x f x dx dx U f , fπ π= ∫∫ = − − , (6) 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 1 2sin 2 cos 2oe oe oeU f , f u x ,x f x f x dx dx U f , fπ π= ∫∫ = − − , (7) 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 1 2cos 2 sin 2eo eo eoU f , f u x ,x f x f x dx dx U f , fπ π= ∫∫ = − . (8) 

The QFT  of  u may be calculated using the form [3] 

( ) ( ) ( ) (1 2 1 2 1 2
1 1, ,

2 2q
k kU f f QFT u U f f U f f− +

= = + − ),  (9) 

Notice that if  ( ) ( )1 2 1 2, f U f f= − ,U f , then Uq  = U. The insertion of ( )1 2, fU f  and U f  yields ( 1 2, f− )

                ( ) ( )1 2q ee eo oo oe ee oe eo of , f U jU k U jU U iU jU kU .= − + − = − − + oU  (10) 

The quaternionic spectrum of the first Riesz term is  

[ ] ( ) ( )1 1 1 2 1,r rQFT v V f f iS U= = − q⋅  (11) 

where 1
1 2

1 2

fS
2f f

=
+

. The insertion of (10) yields  

( ) ( )1r ee oe oo eoQFT v iU U jU kU S= − − + + 1

1 1

. (12) 

Therefore, 

( ) ( )1r ee oe eo oo qiQFT v U iU jU kU S U S= − − + = ⋅ . (13) 

The quaternionic spectrum of the second Riesz term is  

[ ] ( ) ( )2 2 1 2,r r qQFT v V f f U jS= = ⋅ − 2  (14) 

where 2
2 2

1 2

fS
2f f

=
+

. Note the inverse order in comparison to (11). The insertion of (10) yields 

                QFT .( ) ( )2r ee eo oo ov jU U iU kU S= − − − − 2e  (15) 
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Therefore, 

( ) ( )2r ee eo eo oo qjQFT v U iU jU kU S U S= − − + = ⋅2 2 . (16) 

The addition of (10), (13) and (16) yields the following quaternionic spectrum of the monogenic signal  

[ ] ( ) ( )1 2 1 2

1 2
2 2

1 2

1

                                        = 1

M M q

q

QFT f , f U S S

f fU
f f

ψ Γ= = + +
 + +
 + 

. (17) 

where Uq is given by (10). Fig.1 shows an example of the spectrum (17) with 

 corresponding to U . The 

total energy of the spectrum of Fig.1 equals 1 (twice the energy of the Gaussian signal which equals 0.5). 

The energy of the spectrum with the support in the first quadrant (f

( ) ( ) ( 2 2
1 2 1 2 1 2exp -eeu x ,x u x ,x x xπ= = + ) )( ) ( ) ( 2 2

1 2 1 2 1 2exp -q eef , f U f , f f fπ = = + 

1>0, f2>0) equals ≈ 0.69 and in the 

fourth quadrant (f1<0, f2<0) only 0.0123. 

    
 

 

ACKNOWLEDGMENT 

 

This research has been supported by the grant 4 T11D 012 22 of the Committee of Scientific Research 

of Poland. 

REFERENCES 

 

[1] Felsberg M., Sommer G., “The Monogenic Signal,” IEEE Trans. Signal  Processing, vol.49, No. 

12, pp. 3136-3140, Dec. 2001. 

[2] Larkin K.G., Bone D., Oldfield M.A., “Natural demodulation of two-dimensional fringe         

patters: I. General background of the spiral phase quadrature transform,” J. Opt. Soc. Am., vol.18, 

No.8, pp.1862-1870, Aug. 2001. 

 3



[3] Sommer G. (Ed.), Geometric Computing with Clifford Algebra. Theoretical Foundations and 

Applications in Computer Vision and Robotics, ISBN 3-540-41198-4, Springer Verlag Berlin 

Heidelberg 2001. Remark: Elements of the derivation of (10) are given in Chapters 9 and 10. 

However, the final form of (10) is delivered to the authors in a private communication of Dr.Michael 

Felsberg. 

[4] Bülow T., Sommer G., “The Hypercomplex Signal - A Novel Extension of the Analytic Signal to 

the Multidimensional Case,” IEEE Trans. Signal Processing, vol. 49, No. 11, pp. 2844-2852, Nov. 

2001. 

[5] Bülow T., “Hypercomplex spectral signal representation for the processing and analysis of 

images,” in  Bericht Nr. 9903, Institut für Informatik und Praktische Mathematik, Christian-

Albrechts-Universität Kiel, Aug. 1999 (http://www.cis.upenn.edu/~thomasbl/thesis.html). 

 

APPENDIX 

A. 2-D Quaternionic Signals 

The concept of the quaternion number was introduced by Hamilton in 1843 and  defined by the 

formula 

1q a ib jc kd= + + +  (A.1) 

where a, b, c, d ∈ ℜ and the products of the imaginary units i, j, k obey the rules presented in Table 1. 

These products are non-commutative, i.e., ij ≠ ji. 

 

TABLE 1. 

THE PRODUCTS OF IMAGINARY UNITS  

 

1 i j k 

i i2 = -1 ij = k ik = -j 

j ji = -k j2 = -1 jk =i 

k ki = j kj =- i k2 = -1 

 

The conjugate quaternion number is given by  

1q a ib jc kd∗ = − − −  (A.2) 

where the numerical coefficient 1 is usually omitted in notations. The norm (modulus) of q is defined as 

2 2 2q qq a b c d∗= = + + + 2 . (A.3) 
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Replacing in (A.1) the numbers a, b, c, d by real functions ( )1 2a x ,x , ( )1 2b x ,x ,  and ( 1 2c x ,x ) ( )1 2d x ,x , 

yields a quaternion-valued function of the form 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2q x ,x a x ,x ib x ,x jc x ,x kd x ,x= + + + , (A.4) 

 

B. The Quaternionic Fourier Transform  

The Quaternionic Fourier Transform (QFT), that is, the quaternion-valued spectrum of the real signal 

, is defined by the integral [3], [4] ( 1 2u x ,x )

( ) ( ) ( )1 1 2 22π 2π
1 2 1 2 1 2 1 2

i f x j f x
qU f , f QFT u x ,x e u x ,x e dx dx

∞ ∞
− −

−∞ −∞

=   =  ∫ ∫ . (A.5) 

The first exponential uses the imaginary unit i and the second one, the unit j. Due to the non-

commutativity of products of quaternions, the change of the order of functions in the integrand of (A.5) 

yields another quaternion valued function, which differs by signs of the terms. The QFT is invertible and 

its inverse is given by the integral 

            u x . (A.6) ( ) ( ) ( )1 1 2 22π 2π1
1 2 1 2 1 2 1 2

i f x j f x
q q,x QFT U f , f e U f , f e df df

∞ ∞
−

−∞ −∞

 = =  ∫ ∫

C. The Quaternionic Hermitian Symmetry 

The quaternionic spectrum defined by the QFT obeys the rules of the quaternionic Hermitian symmetry 

defined by the relations [3], [4], [5] 

( ) ( )1 2 1 2q j qU f , f U f , fα  − =   , (A.7) 

( ) ( )1 2 1 2q k qU f , f U f , fα  − − =   , (A.8) 

( ) ( )1 2 1 2q i qU f , f U f , fα  − =    (A.9) 

where the functions αi, αj and αk are called involutions of Uq. Using (10) the involutions αi , αj  and αk are 

defined as follows: 

( )1 2i q ee oe eo oof , f iU i U iU jU kUα = − = − + − , (A.10) 

( )1 2j q ee oe eo oof , f jU j U iU jU kUα = − = + − − , (A.11) 

( )1 2k q ee oe eo oof , f kU k U iU jU kUα = − = + + + . (A.12) 

These involutions can be easily derived using the rules of Table 1. The quaternionic Hermitian symmetry 

is illustrated in Fig.2. Any real signal can be reconstructed using a single-quadrant quaternionic spectrum. 

The spectral information in the complementary three quadrants is redundant. 
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                  f2 

( ) (                   U f  )1 2 1 2, ,j q qU f f U f fα   = −  ( )1 2,q f

( ) ( )1 2 1 2, ,k q qU f f U f fα   = − −  ( ) ( )1 2 1 2, ,i q qU f f U f fα   = − 

                   f1 

                

 
 

 

Fig. 2. The quaternionic Hermitian symmetry 
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