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Abstract:  The paper presents a study of   properties of ensemble averages of  Wigner time-frequency 

distributions (WDs) of  random processes defined by statistically independent samples of  stationary and 

nonstationary Gaussian noise and of  radio-frequency telecommunication signals. We used samples of PSK and 

FSK signals transmitting  random telegraph signals. The WDs  of  single samples of these random processes have 

the form of random bipolar fields W(t, f), while   ensemble averages E{W(t, f)} are well defined deterministic 

functions.  The WDs of real signals  have the form of a sum of an even term and a cross-term.  In selected cases,  

theoretical forms of ensemble averages of  these terms  are derived and compared with computer simulations. In 

other cases, only computer simulations  are applied. It  was shown that  ensemble averages of even terms are 

usually (but not always) unipolar  and   of  cross-terms bipolar well-defined deterministic functions.  For so-

called proper processes the ensemble averages of cross-terms are cancelled. In computer simulations, their level 

decreases with increasing number of samples.  In other cases,  cross-terms carry an information about  some 

properties of  a random process.  Derivations show that the notion of  a cross-term coincides with the double 

value of the real part of  the so-called complementary Wigner distribution. In consequence, the paper yields the 

answer to the question, in which cases the complementary distribution matters and yields a deeper insight into 

the properties and role of  cross-terms.  
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I. INTRODUCTION 

    The Wigner distribution (WD)  [1] is the most popular member of time-frequency distributions. Its 

theoretical background and  applications are described in numerous papers and summarized in many 

books, for example [2], and handbooks, for example [3]. In the case of random processes, we have to 

distinguish  WDs of  single sample functions (realizations) W(t.  f ) and its ensemble averages E{W(t, 

f)}. Their properties are different. The WD  of a single sample of  a random process, for example a 

sample of Gaussian noise, has the form of a bipolar random field . Differently, the ensemble average  

( ){ },E W t f  is a well defined deterministic function. Generalized expressions in this context are 

given in [4]. The WD of a real signal contains so-called cross-terms (see Eq.1 in Section 2). The 

authors of [5] describe the role of ensemble averages of a so-called complementary WDs of analytic 

signals. However, the   notion of a cross-term  coincides with  the double  real part of the 

complementary WD.  In this paper, in Section V,  for selected  random processes  estimates of 

ensemble averages of  cross-terms are  derived or calculated   yielding a deeper insight into  its 

properties. 

    Let us have a comment about computer calculations of ensemble averages. Theoretically, the 

operator E{ } requires the summation of  infinite number of samples. In computer simulations, the 

number of samples is finite. In this paper, to get a reasonable accuracy we used 200 to 2000 

statistically independent samples. It is hard to imagine  that such  amounts could be available from 

experiments.  We should apply a theoretical model of generation  samples of random signals.  If the 

construction of such a model is impossible,  the ensemble averages cannot be calculated. This paper is 

illustrated with estimates of ensemble averages of WDs  of noise   and telecommunication signals 

calculated using theoretical models. Let us mention  that if the correlation function of the random 

process can be derived in a closed form, the ensemble average   of the WD  defined by the Fourier 

transform of the correlation function may also have a closed form. Differently, the WD  of a single 

sample, for example a sample of a low-pass Gaussian noise, usually cannot  be derived in a closed 

form. It can be computed if the data defining the sample are available. In that case , the knowledge of 

the closed form  validates the numerical calculation of the ensemble average of the WD. 
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II. NOTATIONS  of WIGNER DISTRIBUTIONS 

The Wigner distribution (WD)  [1] of a real  signal x(t)  may be written in the form [6] 

( ) ( ) ( ) ( )* *, 0.5 0.25 0.25 , , ,xx even cross ss crossss
W t f W W W t f W t f W t f = + = + − +  , (1) 

where ( )* ,
ss

W t f  is the WD  of the analytic signal ( ) ( ) ( )s t x t jx t= +
�

. Here ( )x t
�

 is the Hilbert 

transform of x(t)  and ( ) ( )* *, ,
ss s s

W t f W t f− =  is the WD of the cojugate analytic signal s
*
(t). The 

term ( ) ( ) ( )* *, 0.5[ , , ]even ss ss
W t f W t f W t f= + −  is called the even part. Let us remind that due to the 

bilinear nature,  the  WD of  a  real signal contains  a cross term Wcross(t, f). Boashash [7]  proposed to 

apply ( )* ,
ss

W t f instead of  ( ),xxW t f  to avoid the generation of  ( ),crossW t f . However, the term 

( ),evenW t f   does also not contain the cross-term  at the cost of  containing the redundant term 

( )* ,
ss

W t f− . The cross-term ( ) ( ), ,cross crossW t f W t f= −  is also an even function of f. Therefore, all 

terms with the support in the half-plane f < 0 are redundant.  In this paper, to get  a  more illustrative 

presentation,  we decided to display in examples all three terms of (1).  Note that it is easier to 

compute xxW  than *
ss

W . Some important features of the cross-terms are studied by slices of the 2-D 

time-frequency distributions along the line f = 0. Such a slice requires a two-sided representation in 

the frequency domain.  For low-pass signals, the supports of  evenW  and crossW  overlap and both terms 

should be displayed separately. In that case, we may calculate the WD of the Hilbert transform   ( )x t
�

 

of the form 

( ), 0.5 0.25xx even crossW t f W W= −�� .    (2) 

It differs from (1) only by the sign of  ( ),crossW t f . The addition of (1) and (2) yields 

    ( ) ( ), ,even xx xxW W t f W t f= + ��              (3) 

and the subtraction yields 

      ( ) ( ) ( ), 2 , ,cross xx xxW t f W t f W t f=  −  �� .                      (4) 
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III. CORRELATION PRODUCTS AND FUNCTIONS 

Let us define the correlation product for a single sample si(t)  of a random process {s(t)}   

( ) ( ) ( ) ( ) ( )*

*, 0.5 0.5
i

i i i i i i i i i iss
r t s t s t x x x x j x x x xτ τ τ + − + − + − + −= + − = + + −

� � � �
  (5)  

and the complementary correlation product [5] 

( ) ( ) ( ) ( ) ( ), 0.5 0.5
i

ss i i i i i i i i i ir t s t s t x x x x j x x x xτ τ τ + − + − + − + −= + − = − + +
� � � �

,  (6)  

where the superscript “+” denotes a function of t + 0.5t and “-“ a function of t - 0.5t.   Let us denote 

the terms of  (5)  as follows 

    
( ) ( ) ( ) ( ) ( ) ( )( )* ,
i i i i i

xx xx xx xxss
r t r r j r rτ = + + −�� � � .    (7) 

Therefore, the terms of the complementary product are 

    
( ) ( ) ( ) ( ) ( ) ( )( ),
i i i i i

ss xx xx xx xxr t r r j r rτ = − + +�� � � .    (8) 

The ensemble averages of correlation products define the corresponding correlation functions. We 

have  

( ) ( ) ( ){ } [ ]* *, ,
i

xx xx xx xxss ss
r t E r t r r j r rτ τ= = + + −�� � �     (9) 

and the complementary correlation function   

   ( ) ( ) ( ){ } [ ], ,
i

ss ss xx xx xx xxr t f E r t r r j r rτ= = − + +�� � � ,    (10) 

where xxr  and xxr�� are autocorrelation and   xxr �   and xxr� cross-correlation functions. 

 Proper and improper processes: The authors of [5] following the ideas presented  by Picinbono  et 

all. (see reference [3]-[6] in [5]) define so-called proper and improper complex random signals. A 

complex zero-mean random signal s(t) is called proper if ( ) ( ){ }1 2 0i iE s t s t =   for all pairs (t1, t2). Here 

we have 1 0.5t t τ= + and  2 0.5t t τ= − .  The signal is proper if in (5) xx xxr r= ��  and xx xxr r= −� � . Important 

remark: For random signals,  the correlation products defined by (5) and (6) are random functions. 

Differently,  the ensemble averages (9) and (10)  are  well-defined deterministic functions [4] . Note 

that for proper processes, the real and  imaginary terms of the complementary correlation function 

equal zero. 

 



 5 

IV ENSEMBLE AVERAGES OF  WIGNER DISTRIBUTIONS 

The WD  of a single sample of the analytic signal si(t)  defined by the Fourier transform of the 

correlation product (5) 

( ) ( ) ( ) ( )* *

2, ,
i i j f

ss ss
W t f r t e d

π ττ τ
∞

−

−∞
= ∫     (11) 

is a real function. The same formula applies for the WD  of a real signal x(t) changing the subscript  ss
*
 

to xx. Differently, the complementary WD   defined by the Fourier transform of the complementary 

correlation product (6), i.e., 

( ) ( ) ( ) ( ) 2, ,
i i j f

ss ssW t f r t e d
π ττ τ

∞
−

−∞
= ∫     (12) 

is a complex function. The insertion of (6)  disregarding two vanishing integrals yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , cos 2 , , cos 2
i i i i i

ss xx xx xx xxW t f r t r t f d j r t r t f dτ τ π τ τ τ τ π τ τ
∞ ∞

−∞ −∞

   = − + +   ∫ ∫�� � � ,  

   ( ) ( ) ( ) ( ) ( ) ( ), Re , Im ,
i i i

ss ss ssW t f W t f j W t f   = +   
.     (13)  

The WD of a single sample of a random signal defined by (11) may be regarded as sample of a random 

proces ( ){ }* ,
ss

W t f . The ensemble average is 

( ) ( ){ } ( ) ( ){ }* * *

2, , ,
i j f

ss ss ss
T t f E W t f E r t e d

π ττ τ
∞

−

−∞
= = ∫ .   (14) 

We apply the notation T used in [5]. Since the operator E and the Fourier transform are linear, the 

order in (14) can be changed. We get

 ( ) ( ) ( ){ } ( ) ( ){ } ( )* * * *

2 2, , , ,
i i j f j f

ss ss ss ss
T t f E W t f E r t e d r t e d

π τ π ττ τ τ τ
∞ ∞

− −

−∞ −∞
= = =∫ ∫ .  (15) 

This form shows  that the ensemble average  ( )* .
ss

T t f is given by the Fourier transform of the 

correlation function defined by (9) (see [2], Section 3.2.5).  In consequence, it is also a well-defined 

deterministic function [4].  Computer simulations with a finite number of N samples  confirmed that 

the Eq.(14) and (15) yield the same functions. Note that (15) requires the summation of  N correlation 

products and calculation of a single integral while (14) requires the calculation of N  integrals. 

Obviously,  the computational efficiency is much better by implementation of (15) than (14). 

Similarly to (15), the ensemble average of the complementary WD is 
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( ) ( ) { } { }2, , Re Imj f

ss ss ss ssT t f r t e d T j T
π ττ τ

∞
−

−∞
= = +∫ .    (16) 

It can be shown  that the cross-term in (1)  is equal to twice the real part of the complementary WD 

defined by (13), i.e., ( ) ( ), 2Re ,
cross ss

T t f T t f=    . Remark: In [5] the last term in Eq.(28), i.e., 

( )Re ,W

ssT t f  should be multiplied by 2.  Concluding,  investigations about the role of the 

complementary WD coincide with investigations about  the role of   cross-terms and for proper 

processes  the theoretically derived ensemble averages of cross-terms  equal  zero.   

The nature of the terms of the ensemble average of the WD of  a real signal. 

The  WD of a single sample of a real signal  xi(t) is given by the Eq.(11). The corresponding ensemble 

average is (see (1)) 

            ( ) ( ) ( ) ( )* *, 0.5 0.25 0.25 , , ,xx even cross crossss s s
T t f T T T t f T t f T t f = + = + +                 (17) 

and of the Hilbert transform ( )ix t
�

 (see (2))   

            ( ) ( ) ( ) ( )* *, 0.5 0.25 0.25 , , ,xx even cross crossss s s
T t f T T T t f T t f T t f = − = + − �� .                         (18) 

The energies of the signal and its Hilbert transform are equal and given by the integrals [3] 

   ( ) ( ) ( ) ( )
2 2

Energy= , ,xx xxx t dt x t dt T t f dtdf T t f dtdf  =   = =   ∫ ∫ ∫∫ ∫∫ ��

�
.  (19) 

This equation  is fulfilled only if   the energy of the cross term in (17) and (18) equals zero. We have 

    ( ), 0crossT t f dtdf =∫∫  .     (20) 

In many presented examples this equation is fulfilled due to the periodicity in time of ( ),crossT t f . 

Differently, the two terms of  Teven are usually (but not always) unipolar functions. Both are well 

defined deterministic functions. Note that (19) and (20) are valid if we insert Wxx  in place of Txx [6].  

V. EXAMPLES 

V.I. Noise signals 

1. Low-pass noise 

Consider samples  xi(t) of  a low-pass  nonstationary Gaussian noise with the power density  



 7 

( )
( )

( )
( )

0

0

 if  < 

0.5  if 

0 if 

G f B t

G f G f B t

f B t

= =

>

.     (21) 

If  B(t) = B  is a constant, the noise is WSS.  Fig.1a shows  a sample  of xi(t) ,  B  = 1, generated by the 

method described in  [8], [9].   The method enables the generation of the Hilbert transform of x(t).  A 

sample of the nonstationary noise is shown in Fig.1b. The corresponding instantaneous bandwidth 

( ) ( )( )1 0.25 0.25 tanh 0.16 40B t t = + + −   is shown in Fig.1c. 
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Fig. 1. a) A sample of  a low-pass  WSS Gaussian noise  , b) A sample of a nonstationary  noise. c) The  

instantaneous bandwidth ( ) ( )( )1 0.25 0.25 tanh 0.16 40B t t = + + − 
 of the sample in b). 

The stationary case 

 In the stationary case, the terms of the  correlation function  (9)    are time independent and have the 

form [9] 

   ( ) ( )
( )2

0 0

sin 2
2

2

B
j f

xx xx
B

B
r r G e df G B

B

π τ π τ
τ τ

π τ

−

−
= = =∫�� ,    (22) 

    
( )

0

1 cos 2
2

2
xx xx

B
r r G B

B

π τ

π τ

−
= − =� � . 

The random process ( ){ }ix t  is WSS and proper and the terms of the complementary correlation 

function (10) equal zero. Therefore,   the ensemble average of  cross-terms Tcross equals zero.  In 

consequence, the ensemble average of the WD given by (17) is ( ) ( ), 0.5 1xx even tT t f T G f= = ⊗ . The 

multiplication with  1t  indicates the time independence. Let us explain why having the theoretical 

solution it is still reasonable to calculate computer simulations. 

1. The samples of noise of Fig.1 are generated by a computer using a specific algorithm. They 

represent a simulation of the ideal Gaussian noise. Simulations are never perfect. 
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2. The theoretical ensemble average is defined for an infinite number of samples. In computer 

simulations this number is finite. In consequence, the cancellation of the cross-term is not perfect. In 

the example shown below, the vanishing cross-term is modulated by a sine wave. Actually, we have 

not derived a theoretical explanation of this effect. 

3. There are no closed forms representing the WDs of single samples. Therefore, comparisons of the 

properties of WDs of single samples with the ensemble averages  are possible using computer 

simulations.   

4. Computer simulations of examples with  known theoretical solutions validate similar simulations 

for which theoretical solutions are not derived. 

5. Note that computer simulations apply samples of finite length while the theoretical  samples may 

have infinite length. 

Let us  present the result of computer simulations for the low-pass stationary noise.  The WD of a 

single  sample  xi(t)  defined by  Eq.(1)  is  displayed in Fig.2. Since the supports of the two terms of  

( ), 0.5 0.25xx even crossW t f W W= + overlap, we display:  a) Wxx ,  b)  0.5 evenW  and c)  0.25 crossW . We 

observe  that all terms defined by the Eq.(1) are bipolar random fields. The corresponding  estimates 

of  ensemble  averages calculated using 2000 samples are shown in Fig.3  and 4. We observe  that all 

terms of (17) are well defined deterministic functions and the random process ( ){ }ix t  is WSS and 

proper. From Fig.4b and c we can see,  that ( ),crossT t f  is a bipolar function due to the modulation  by 

a sine wave of frequency fcross = 2B.  Let us remind that the zero crossing frequency of a single sample  

of  noise equals 2 / 3B  (Rice formula [10]). However, the comparison of Figs.2c and 3c shows that  

the averaging process, as expected,  almost cancels the cross-term . The slice ( ), 20xxT f t =  displayed 

in Fig.4a (solid line) shows that the term  ( ),evenT t f  is also a well defined deterministic function. This 

slice is a good approximation of the power spectrum given by Eq.(21). The dotted line represents the 

vanishing cross-term.  Theoretically, the power spectrum of Fig.4a should be a rectangular function. 
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a) b) c)  

Fig.2. The  WDs of a single sample of  noise (see Fig.1a).  a)  Wxx(t,f) = 0.5Weven+0.25Wcross., b) 0.5Weven, and 

 c) 0.25Wcross. In this example the supports of Weven and of Wcross overlap. 

 

 a) b) c)  

Fig.3. Estimates of  ensemble averages for 2000 samples corresponding to  Fig.2 :a) Txx(t,f) =0.5Teven+0.25Tcross, 

b) Teven, and  c)  The  vanishing  term Tccross. 
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Fig.4. a) Slices of ( )20,xxT t f= .  Solid line  Teven, dotted line Tcross. b) The slice  ( ), 0crossT t f = shows the sine 

wave modulating the envelope of  Tcross, c)  A fragment of  the t-axis of  b) shows a sine wave. 

 

The nonstationary case 

a) b) c)  

Fig.5. Nonstationary low-pass noise. The estimates of ensemble averages. a) ( ), 0.5 0.25xx even crossT t f T T= +  , 

b) 0.5 evenT , c) 0.25 crossT . 

For the nonstationary noise with a sample function of Fig.1b, we display only the estimates of the 

ensemble averages  calculated using 2000 samples. Fig.5 shows these averages in the same order as in 
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Fig.3. The cross-term in Fig.5c is negligible. A computer simulation cannot serve as an exact 

evidence. Neverthless, it shows that the presented nonstationary process is proper. Fig.6 shows that the 

vanishing cross-term is modulated by a sine wave. Detailed observations (not displayed) show that the 

frequency of this modulation decreases in time by about 3.8%  while the bandwidth increases by 50 %. 

The change of the badwidth is illustrated by the slices of Teven displayed in Fig.7. 
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Fig.6. Nonstationary Gaussian noise. The slices of the terms of ( ), 0xxT t f = . a) Solid line: ( ), 0evenT t f = , 

dotted line  ( ), 0crossT t f =   2,  b)   A fragment  for 18 < t < 22   of  ( )5 , 0
cross

T t f× = . 
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Fig.7. Nonstationary Gaussian noise. The slices  ( ),xxT t const f= . a) t = 1.25, b) t = 19.85 and c) t = 35.0. Solid 

lines: ( ),
even

T t const f= show the change of the bandwidth in time, dotted lines:  negligible values  of 

( ),crossT t const f= . 

 

2. Band-pass Gaussian noise. 

The power spectrum of  a band-pass Gaussian noise can be regarded as the difference of  two low-pass 

power spectra given by (21) with  B2 >B1. The corresponding time independent  autocorrelation 

functions  are 

( ) ( )
( ) ( )2 1

0 2 0 1

2 1

sin 2 sin 2
2 2

2 2
xx xx

B B
r r G B G B

B B

π τ π τ
τ τ

π τ π τ
= = −�� ..   (23) 

Using (22),  we get the cross-correlation functions. Of course, the band-pass Gaussian noise is proper 

and, as in the case of a low-pass noise,  the cross-term vanish. The results of computer simulations are 

presented in Fig.8 and 9.  In this example the supports of  Teven and Tcross are disjoint. 



 11 

a) b)  

 

Fig.8. Band-pass noise, B2=2,  B1 = 1. a) The ensemble average ( ), 0.5 0.25xx even crossT t f T T= + .  b) The vanishing 

term Tcroos. 
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Fig.9.  Band-pass noise., the slices of the WD  of Fig.8. a)  ( )20,xxT t f= ,  the solid line  shows the estimate of the 

power spectrum  and the dotted line the vanishing cross-term.  b) A part of the t-axis of the slice ( ), 0crossT t f = , 

average for 2000 samples (note the range of the y-axis).  c) Slices of calculated correlation functions ( ),xxr t τ  

and  ( ),xxr t τ . Solid line ( )20,xxr t τ= and dotted line ( )20,xxr t τ=�� . The difference  is almost invisible. 

 

The slices of  calculated  real parts of  the correlation function defined by Eq.9, displayed in Fig.c, 

confirm that the xx xxr r= �� , i.e.,  the Gaussian band-pass noise is proper. The theoretical shape of these 

functions is given by the Eq.(23). 

3. Modulated low-pass noise 

A sample function of this process has the form

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
cos 2 sin 2cj f t

i i i c i c i is t y t e y t f t jy t f t x t jx t
π π π= = + = +

�
,      (24) 

where yi(t) is a sample function of the low-pass  WSS noise of power spectrum defined by (21). 

Note that the imaginary part is the Hilbert transform of the real part only, if  cf B≥ , i.e., the 

Bedrosian’s theorem can be applied [11].  The  correlation functions are 

                                    ( ) ( ) ( ) ( ), cos 2 cos 4xx yy c cr t f f tτ ρ τ π τ π=  +   , (25) 

                                      ( ) ( ) ( ) ( ), cos 2 cos 4xx yy c cr t f f tτ ρ τ π τ π=  −  �� , (26) 
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where ryy(t) has the form (22). Evidently, ( ) ( ), ,xx xxr t r tτ τ≠ �� , i.e., the process is improper. The 

calculation of the ensemble averages of  WDs yields   

                                 ( ) ( ) ( ) 2, 0.5 cos 2 cos4 j f

xx yy c cT t f f f t e d
π τρ τ π τ π τ−=  +  ∫   

                         ( ) ( ) ( ) ( )0.25[ 0.25 ] 1 0.5 cos 4c c t cG f f G f f G f f tπ= − + + ⊗ + , (27) 

                     ( ) ( ) ( ) ( ) ( ), 0.25[ 0.25 ] 1 0.5 cos 4xx c c t cT t f G f f G f f G f f tπ= − + + ⊗ −�� . (28) 

Note that (27) is a specific case of (17) and (28) of (18). Therefore, the first two terms in (27) and (28) 

represent the unipolar term Teven and the third one the bipolar term Tcross. Fig.10 shows  theese terms 

a) b)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

 f

slice at t=20.3

c)
19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t

slice at f = 0

 

Fig.10.  a) 0.5 0.25xx even crossT T T= +  of modulated low-pass noise  (see  (24)).  Note the disjoint supports of 
evenT  and  

crossT . b) The slice of the terms of xxT :  Solid line ( )0.5 20,evenT t f= , dotted line ( )0.25 20,crossT t f=  c) The slice 

( )0.25 , 0crossT t f = . The frequency   fcross = 3, i.e.,  equals twice of the carrier frequency  fc = 1.5.  

 

calculated using the WSS noise of Fig.1a , B = 0.5 and  a carrier   with  fc = 1.5.  Here, the three terms 

of (17) have disjoint supports. The comparison of Figs.8 and 9 with Fig.10 shows,  that differently to 

the band-pass noise, the term Tcross does not vanish and is modulated by a sine wave with  fcross =2 fc = 

3.0,  i.e., the same as the frequency of the cross term of the WD of a real signal cos(2pfct) (carrier), i.e., 

cos(4pfct).  

A comment to the  interpretation of an example by the authors of [5] 

The authors of [5]  defined a random process with sample functions given by the real part of (24), 

however, with the carrier frequency fc = fc,i defined  as a random variable. The example presented in 

[5] applies fc,1 = B and  fc,2 =2B, where B is the bandwidth of a WSS  low-pass noise  with a power 

spectrum given by (21). (Remark: In [5], the bandwidth defined in the text differs from the bandwidth 

displayed in Fig.3). Let us quote the conclusion of the authors of [5]: ”Thus, ( )* ,W

ssT t f =  
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( ),0yy cf fΓ −∑  is constant in t, whereas only ( ) ( ) ( ),0, exp 2 2W

ss yy c
T t f f j nf tΓ π= ⋅∑ displays a periodic 

behaviour in t. Therefore, a description based on ( ),W

ssT t f fails to capture the cyclo-stationary nature 

of x(t). Rather, it would lead us to wrongly conclude that x(t) is WSS” – end of citation. Our comment 

is as follows:  Having in mind the equiprobable values of the two carrier frequencies. the process 

defined in [5] may be regarded as a sum of two processes defined by (24) weighted by 0.5 .  In 

consequence, the resulting Txx is a sum of two Txx  given by (27) .  The computer simulation for B = 

0.5 is shown in Fig.11. The terms Teven overlap and the cross term Tcross  has the envelope G(f)  

modulated by the waveform of  Fig.11c. Instead of the sine wave of Fig.10c, we observe a sine wave 

distorted by the second harmonic. The authors of [5] classify this process as cyclostationary defined by 

the periodicity  of the cross-term w.r.t.  the variable t . However,  usually the process is called 

cyclostationary if the correlation function  r(t, t) is periodic w.r.t. the shift variable t.  Note that using 

the definition of cyclostationarity proposed in [5], the process defined by sample functions (24) should 

also be classified as cyclostationary. We are not in favour  to use such a definition.     
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Fig.11.Illustration of the example presented in [5]. Computer simulation of  Txx using  B = 0.5, fc1 = B and fc2 

=2B.  a) Txx(t ,f) , b) The slice  ( )20.5,xxT t f= , solid line Teven , dotted line Tcross. c) The periodic waveform of 

the slice ( ), 0crossT t f = . 

  

V.2. Telecommunication Signals 

All WDs of single samples of random telecommunication signals have the form of random bipolar 

fields similar as in Fig.2. Examples are here not presented [12], [13], except the case of FSK. 

1. Phase-Shift Keying Signals 

A  sample of a radio frequency  analytic signal with phase shift keing (PSK) is given by the formula 

    ( ) [ ]2 ( )

0
c i ij f t b t

is t A e
π π θ+ +

= .     (29) 
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Fig.12.  a) A sample of a binary random telegraph signal. b) A part of a sample of a PSK signal. 

We assume that bi(t) is a sample of a binary random telegraph process shown in Fig.12a. It was 

generated using a method described in [12]. The signal is analytic for carrier frequencies sufficiently 

high (no leakage of the spectrum into negative frequencies [11]).  

Synchroneous carrier versus asynchroneous carrier 

The phase constant θi  may be the same for all  i (synchronous carrier - SynC)  or be a random variable  

uniformly  distributed in the interval 0 - 2π (asynchronous carrier - AsynC). 

Synchroneous versus asynchroneous mode of the random telegraph signal 

 Note  that the samples of the base-band random telegraph signal bi(t) can be generated in synchronous 

time grid (SynT) or in an asynchronous time grid (AsynT)  with transitions from the states 0 and 1 at 

points uniformly distributed within the elementary slot of duration T.  

Four options of the random process with sample functions given by (25) 

Therefore, there are four options in defining the random process {s}: SynT-SynC, AsynT-SynC, SynT-

AsynC and AsynT-AsynC. The properties of the options are not the same. Therefore, any information 

about the properties of  a PSK random process missing the information about the option is incomplete.   

Derivation of the correlation functions 

A sample of the correlation product is [12], [13] 

( ) ( ) ( ) ( ) ( )
*

0.5 0.5 2*0.5 0.5 i i c
j b t b ti j f

i iss
r s t s t e e

π τ τ π ττ τ
+ − −  = + − = .  (30)  

The correlation function is 

( ) ( ) ( ){ }*

0.5 0.5 2
, c

j b t b t j f

ss
r t E e e

π τ τ π ττ
+ − −  = .                 (31) 
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Computer calculations show that  ( ) ( ){ }{ }cos 0.5 0.5E b t b tπ τ τ + − ∓  yield a waveform depending on 

the choice of the case SynT or AsynT and ( ) ( ){ }{ }sin 0.5 0.5 0E b t b tπ τ τ + − = ∓ . 

In the case AsynT  we have 

( ) ( ){ } ( )
0.5 0.5

/
j b t b t

E e tri T
π τ τ

τ
+ −   =

∓

,     (32). 

where  tri(t/T) is a triangle function with a support from –T to T.  It yields  

( ) ( )
( )

( )
*

2

2 2
sin

, / 1c
T cj f j f

tss T
c

f f T
T t f tri T e e d T

f f T

π τ π τ
π

τ τ
π

−

−

  −  
= = ⊗ 

−  
∫ .  (33)  

The multiplication ƒ1t indicates the independence on time. In the case SynT  (32) is replaced by 

   
( ) ( ){ } ( )

0.5 0.5
/

j b t b t

TE e T
π τ τ

Π τ
+ ± −   = ,     (34) 

where ( )/T TΠ τ  is a rectangular function with a support from –T to T. It yields 

  ( )
( )

( )
*

2 2
sin 2

, 1
2

c
T cj f j f

tss T
c

f f T
T t f e e d T

f f T

π τ π τ
π

τ
π

−

−

  −  
= = ⊗ 

−  
∫ .               (35) 

Experimental evidence that the 2PSK process, case SynT-SynC. is improper 

a) b) c)  

Fig.13. WDs  of PSK signal, option SynT-SynC , fc = 1. a) ( ),xxT t f . b) The part Teven,  c) The part Tccross. 
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Fig.14.  PSK, the slices of  ( ),xxT t f . a) ( )20.5,xxT t f= . Solid line Teven, dotted line, Tcross, b) ( ), 0crossT t f = , 

 c)  A fragment  of the t-axis shows details of the waveform modulating ( ),crossT t f  . 
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Fig.15. ,PSK,  the same slices as in Fig.14a and  c  for  a doubled value of the elementary time slot T . 

 

Fig.13. shows the ensemble averages of the WDs of  2PSK (2 denotes binary b(t)) calculated  using 

2000 samples.  In this example the supports of the two terms of Teven and of Tcross do not overlap. The 

finite value of Tcross (Fig.13c) shows that the 2PSK process, case SynT-SynC,  is improper.  The slices  

from Fig.14c and Fig.15b  show  that Tcross  is modulated by a periodic signal . The waveform of this 

signal changes with the change of the elementary time slote of the transmitted random telegraph 

signal. b(t).  Concluding, in the case SynC-SynT  the cross-term  yields the information about the 

carrier frequency and  the length   the elementary time slot ( bit rate), compare Fig.14c and 15b. 

 

Computer simulations, case 2PSK,  AsynT –SynC. 

The result of computer simulations is shown in Fig. 16. The comparison  of Figs14 and 15 with Fig.16 

shows that in the case 2PSK,  AsynT –SynC,  the waveform modulating the cross-term is a pure sine. 

The information about the length of the time slot T is lost. Note that the eventual change from the case 

SynC to AsynC  cancells the cross-terms.   
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Fig.16. 2PSK, case AsynT-SynC. a) ( ),xxT t f , b) The slices of ( )20,xxT t f= , ( )20,evenT t f= (solid line), 

and ( )20,crossT t f= (dotted line, c) The slice ( ), 0crossT t f =  shows a sine waveform instead of the distorted 

waveforms of Fig.14 and 15. The information about the length of the time slot T is lost. 

 

32PSK, case SynT-SynC.  



 17 

The propertiies of ensemble averages of the WDs of random processes with sample functions defined 

by M-nary PSK differ in comparison to the binary case. Fig.17 shows the correlation functions 

( ) ( ), ,xx xxr t r tτ τ≈ ��  calculated for 32PSK , case SynT-SynC , using 2000 samples. Evidently, their 

difference equals nearly zero, i.e., the process is proper. Fig.18 shows the correponding 

( ),xx evenT t f T≈    (the level of crossT  is negligible). The slices of Fig.18b) and c) show that evenT  is 

unipolar and modulated by a  periodic signal. 

 

Fig.17. 32PSK, case SynT-SynC.  Terms of the correlation function defined by (17). a) ( ),xxr t τ ,  

b) ( ),xxr t τ�� and  c) xx xxr r− ��  . Evidently xx xxr r≈ ��  and the 32PSK process is proper. 
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Fig.18. 32PSK. a) The ensemble average xx evenT T≈  (the level of Tcross is negligible), b) The slice 

( ), 1evenT t f = ± and c) A fragment of the t-axis of b). 

 

The binary frequency shift random process is cyclostationar 
 

A  sample of the FSK analytic (carrier frequency fc sufficiently large) random process  is given by the 

formula 

    ( )
( )( )12 c c i ij f f b t

is t e
π ∆ θ + × + = ,     (36) 

where  ( )1 0.5i ib b t= − +  yields a symmetrical frequency shift   from –0.5Dfc to 0.5Dfc. Again, the four 

options defined for the PSK can be applied. This is a specific example. WDs of a single sample are 

shown in Fig.19. The supports of Weven and Wcross are disjoint. We observe that  Weven is a random 

field. However,  the random field of  Wcross contains deterministic periodic terms. Fig.20 presents the 
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estimates of the correlation functions defined  by (17).   Both terms ( ),xxr t τ  and  ( ),xxr t τ��  are 

periodic functions w.r.t. both variables, i.e., the global time t and the local time shift t. The periodicity  

w.r.t. t  shows that the 2FSK process is cyclostationary. Fig.20c yields the evidence that xx xxr r≠ �� ,i.e., 

the process is improper.  The estimate of the ensemble average of the WD calculated for 1000 samples 

is shown in Fig.21a. The slice of the cross term in Fig.21b shows the nature of the modulation of the 

cross term. A periodic wave  of fundamental frequency equal 2fc  has an envelope. The frequency of 

this envelope equals the double value of the frequency shift Dfc.  The slice of Teven in Fig.21c has the 

form of a Gabor wavelet. We observe here the term Teven is here a bipolar function of t. The width of 

the main period of the wavelet  depends on the value of the frequency shift. Again, the change from 

the case SynC  to AsynC cancels the cross-term. 

a) b) c)  

 

Fig.19.  2FSK, case SynT-SynC, WDs  of a single sample, carrier frequency  fc = 1, frequency deviation  

Dfc = 0.1. a) Wxx , b) Weven and c) Wcross. 

a) b) c)  

 

Fig.20. 2FSK, case SynT-SynC.  Terms of the correlation function defined by (17). a) ( ),xxr t τ ,  

b) ( ),xxr t τ�� and  c) xx xxr r− ��  . Evidently xx xxr r≠ ��   are periodic functions w.r.t. t and t. 
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Fig.21. 2FSK, case SynT-SynC,  fc =1, Dfc = 0... a) The estimate of the ensemble average 

( ), 0.5 0.25xx even crossT t f T T= + , b) The slice ( ), 0crossT t f =  and c) The slice ( ), 1evenT t f = ± .  

 

The M-nary PSK  and FSK  have equal ensemble averages of the Wigner distributions and are 

proper. 

However, only the 2FSK process is improper.  For the M-FSK process, M ≥ 8, ( ) ( ), ,xx xxr t r tτ τ≈ ��  

and both are functions only of t.  Therefore, the process is proper and the cross-term vanish. We found 

that the images in Fig.18 and 19 calculated for 32PSK  are practically the same for 32FSK.  

CONCLUSIONS 

1. We  confirmed  in several examples that WDs of a single sample of a random process have the form 

of a bipolar random field and that their ensemble averages are well defined deterministic functions.  

2.  From the point of view of illustrative presentation and computational efficiency it was convenient 

to calculate the WDs of  real signals  in the form ( ), 0.5 0.25xx even crossW t f W W= +   or for ensemble 

averages ( ), 0.5 0.25xx even crossT t f T T= + having in mind that the parts in the half-plane f < 0 are 

redundant. This representation enables the presentation of important slices ( ), 0crossT t f = . If the 

supports of  Weven  and Wcross overlap, they can be calculated separately using (3) and (4). 

3. The equation  (20) shows that the energy of cross-terms equals zero.  

4. The double value of the real part of the complementary WD defined in [5] coincides with the cross-

term Tcross. In consequence, any statements about the role of the complementary WD apply for the 

statements about the role of cross-terms. 

5.  The 2PSK and 2FSK processes , cases SynT-SynC and  AsynT-Sync, are improper. Differently, the 

corresponding M-PSK and M-FSK prosesses, M > 8, are proper (the cross-terms vanish). Computer 

calculations show, that for M = 32, the ensemble averages of  WDs  of PSK and FSK processes are 

almost the same. 

6. For many processes, for example stationary and nonstationary Gaussian noise and all processes with 

harmonic carriers of uniformly distributed random phase, the cross-terms vanish. In computer 

simulations, the level of these cross-terms  decreases with increasing number of samples. 



 20 

7. For selected processes, the ensemble average of the cross-terms contain information about the 

features of the process not included in the even part. For example,  for 2PSK, option SynT-SynC, the 

cross-term yield the information about the length of the elementary time-slot of the random telegrraph 

signal. In the case 2FSK, option SynT-SynC, the cross-terms yield  the information about the value of 

the frequency shift. However, the same information is included in the even part. 

8. Having in mind the points 5, 6 and 7, we believe that the conclusion of the authors of [5] that the 

complementary WD matters in stochastic time-frequency analysis using the analytic signal should be 

replaced by the statement in which cases it matters. 

9. Due to the  large number of samples required to calculate the estimate of  ensemble averages, in all 

cases when the teorethical model based on experimental data cannot be developed, the calculation of 

ensemble averages  is impossible. 

10. Let us have a following comment about the role of cross-terms. The instantaneous frequency of a 

single sample of the random process is given in terms of the WD by the formula 

    ( )
( )

( )

*

*

,

,

ss

ss

fW t f df
f t

W t f df

∞

−∞

∞

−∞

=
∫

∫
.     (37) 

The instantaneous phase is given by the integral 

     ( ) ( ) 0t f t dtϕ ϕ= +∫ ,     (38) 

where j0 is the integration constant. The information about  j0    is not included in ( )* ,
ss

W t f . In the 

case of the simple harmonic signal ( ) ( )cos 2 c ox t f tπ ϕ= + , it  may be recovered from  the cross- 

term  ( )02cos 4 cf tπ ϕ+ . However,  ( ) ( )cos 2 c ox t f tπ ϕ= +  defines a random process only, if  j0 

is a random variable. And if this variable is uniformely distributed in the interval 0 -2p, the cross term 

vanishes. Note that  the ensemble average of the instantaneous frequency can not be calculated by 

inserting in (37) *
ss

T  instead of *
ss

W . We believe  that the calculation of ensemble averages of 

instantaneous frequency has no sense. 
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Concluding remark: Investigations  of  ensemble averages of WDs of random processes give a deeper 

insight to the properties of the processes. However,  their significance for practical applications could 

be questioned. 
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