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Insertion of new hidden units

Pruning redundant neurons

- joining twin neurons

- removing dead neurons

- removing constant neurons

C O M P A S S
(COmmon Muon Proton Apparatus for Structure and Spectroscopy)

Estimation of a  parametersLL
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Tests

Selection of photon-gluon fusion events

COMPASS is a high-energy physics experiment at the Super Proton Synchrotron (SPS) at 
CERN in Geneva, Switzerland. The purpose of this experiment is the study of hadron structure 
and hadron spectroscopy with high intensity muon and hadron beams. This experiment 
continues program that was initiated by observation (EMC experiment) that only a small 
fraction of the proton spin is carried by the spin of the quarks. One of the hypothesis to be tested 

*is that a significant fraction of the nucleon spin comes from polarized gluons .
*Gluons and quarks are the elementary particles which form the structure of nucleon (protons and neutrons).
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Proposed algorithm have been successfully examined on various tasks of a data analisys of 
high-energy and neutrino physics experiments (SMC, COMPASS, ICARUS). In this work we 
present two application examples - classification of particle interaction type and estimation of 
one of the interaction parameters.

A process that involves gluons is required to measure the gluon polarization. Such a process, 
so-called photon-gluon fusion (PGF), occurs in a deep inelastic lepton-nucleon scattering 
among the other processes that we consider as a background. Diagrams of the PGF and two 
lowest order processes (most probable) are presented in Fig.10. As we cannot observe directly 
quarks and gluons, it is not straight-forward to distinguish which process was the origin of final

g* - virtual photon
G - gluon
q - quark

particles (X) that appear in the detectors after scattering. Two approaches are used to select PGF 
from background. First is looking for pairs of hadrons with high transverse momentum (p ) t

which likely appear as a product of q-q pairs produced in PGF. This provides a good separation 
from the virtual photon absorption process (LO), where the only source of p  is small t

momentum of quarks inside the nucleon. Another approach is to look for charm particles 
(containing c quark) which may appear in PGF and not in LO and Compton processes as they 
are interactions with nucleon quarks (practically only u and d quarks). Unfortunately, heavy c 
quarks are also rarely produced.

In this work we present selection of PGF events from high-p  sample. As an input for t

network we use 11 kinematical variables describing scattered muon and produced hadrons. 
Network is trained with our algorithm to give 
high output (0.95) for PGF events and low 
(0.05) for LO and Compton events. 
Distribution of the network output (Fig.11) 
shows that PGF process is relatively easy to 
separate from LO events, while Compton 
events are much more difficult to classify 
correctly due to the similarity of process 
products to products of PGF.

Fig.12 shows purity-efficiency curves 
obtained for network classification and 
classification based on manually optimized 
cuts (though obvious limitations this 
technique still is popular due to possible 
connection between chosen cuts and 
knowledge about the interaction model).

Applying automatic hidden neuron 
insertion and pruning to the training process 
showed that networks with manually 
adjusted size of hidden layers (previously 
used for this task) tend to be oversized. 
Significant reduction of the number of 
attempts has been achieved as network 
results are less dependent on the initialization 
than in case of fixed sized networks.

network results

kinematical cuts

Fig.12.

Another application of the presented algorithm is the estimation of the so-called „analyzing 
power” a  needed in the data analysis in COMPASS experiment. Gluon polarization is LL

proportional to a and depends on the measured asymmetry. Analyzing power cannot be LL 

directly calculated from the measured quantities (full information set contains variables 
describing interaction kinematics at the quark level) and some kind of approximated formula 
(parameterization) based on Monte-Carlo simulation is needed.

For test purposes network was trained with all variables required to calculate a . Achieved LL

high correlation between network output and true a  LL

value (R  coefficient in Fig.13) proves that network is xy

capable of learning the formula. When input variables 
are limited to measured quantities only, correlation 
coefficient drops (Fig.14), but still is higher than in 
case of a  parameterized in a standard way (Fig.15).LL

Training algorithm allowed to keep the network 
sizes very compact (5 and 2 units in 2 hidden layers in 
presented case; 5 inputs and 1output neuron are 
determined by the task). Another advantage over 
standard parameterization is smaller training set 
required to prepare the network (about an order of 
magnitude) and therefore much shorter estimator 
preparation time.

Choosing the network topology (e.g. number of hidden units) is a crucial part of 
the network preparation. In virtually all real-live cases there is no clue what 
number of hidden units is the minimum that allows to solve the problem and when 
it becomes too large and causes overtraining effect.

The goal of our algorithm is to establish the proper number of neurons in each 
hidden layer of the MLP network by adding and removing neurons during the 
network training. Between the structure modifications network is trained with a 
back-propagation algorithm (we use quick-prop, but other algorithms are also 
applicable). Proposed techniques of the structure modifications are not harmful to 
the current state of the network and the training progress. Only useless neurons are 
removed and new neurons may only improve the network performance. Thus, 
network structure may be modified at any time of the training. Additionally, 
structure modifications change the weight space which is favorable for back-
propagation algorithms giving a chance of escaping from local minimums.

Neurons that respond to any excitation with nearly the same output value likely 
can be joined into a new single unit. Such a situation often corresponds to 
presented in Fig.2, where class borders l  and l  may be replaced with  l .1 2 12

Weights connecting the new neuron with the following layer should be 
calculated as sums of corresponding weights of the removed neurons. A measure 
of similarity between neurons can be used as a parameter for the pruning 
procedure; for this purpose we use following simple formula:
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The idea of a network growth is borrowed from the Cascade-Correlation network. 
Like in this model, we use a pool of neuron candidates (initial weights are 
randomized, but we plan to use some heuristics for at least one neuron in the pool). 
Their weights are trained while the rest of the network weights are frozen. When 
training is completed the best candidate (resulting with the smallest network 
error) is chosen to extend the network structure (Fig.1). It is done only if this 
neuron decreases the network error, otherwise the network remains unchanged. 
New neurons in Cascade-Correlation model become a part of the fixed structure. 
In contrary, in our algorithm, all network weights are retrained after successful 
insertion of new neuron. New 
neurons are not fixed on 
particular features of the 
training data; they are just 
pre-trained to fit into the 
existing structure in a best 
possible way. This allows a 
better integration of the new 
neuron with the network 
structure and results in a 
smoother network response.

a  - full information (neural network)LL

Fig.13.

a  - neural  networkLL

Fig.14.

Most of the network training algorithms start from a random neuron weights. We 
observed that during the training process not all of the hidden units are fully 
utilized. Also some neurons responsible for overtraining effect may be recognized 
and removed from the network structure. We propose three types of redundant 
neurons that can be safely removed.
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where w  and w  are the vectors of the input weights of the tested neurons.a b

Fig.3 shows an example of joining twin neurons. Network in this example was trained with a 
large, fixed structure until error value has stabilized. Then twins pruning was enabled. Error 
value returns near to its previous value in a few iterations after each joining of neurons.

a  - standard parametrizationLL

Fig.15.

Fig.7. Network simulation environment.

Because of random character of initial weights some neurons learn irrelevant statistical 
fluctuations (like in the example in Fig.4, where neuron responsible for border l has no chance 
of escaping from that state), or just produce nearly constant output for all training vectors. 
These neurons are detected by a small standard deviation of their activation for training vectors 
when compared to full possible range of activations. When constant neuron is removed, its 
mean output value is included in a bias of neurons in a following layer. Fig.5 shows a fragment 
of the training process, where constant neuron is removed (the same oversized network is used 
as in the joining of twin neurons example).

When initial weights of a hidden unit 
cannot be utilized by the network during 
the training, one of possible scenarios is 
that weights connecting such neuron with 
neurons in following layer are suppressed. 
If the norm of neuron output weights 
vector is much below the mean value for 
all neurons in the layer, tested neuron can 
be removed without influence on 
functioning of the whole network. In our 
tests we observed that this type of 
redundant neurons appears most frequently. Fig.6 shows an example of removing dead neuron 
(again, the same oversized network is used as in previous examples).

Various tests and benchmarks have been performed 
using proposed algorithm. We developed our own 
simulation environment (Fig.7), which was used for 
testing the algorithm and also for designing networks 
for real-life applications (all plots on the poster were 
generated with this tool; we develop it as a freeware and 
it is available on our web site). 

in classification tasks  purity and 
efficiency of selection defined as:

In this section we present two examples of class separation.  First example (Fig.8) compares 
three networks: 1) network obtained with dynamic size adjustments, initiated with minimal 
structure; 2) network with a fixed, oversized structure; 3) oversized network with redundant 
neurons removed. This shows that however classification results are almost identical, using 
growth and reduction techniques simultaneously gives smallest network size and smoothest 
network output. Second example (Fig.9) is the two-spiral benchmark in a fuzzy version. MLP 
network trained with proposed algorithm is compared to Cascade-Correlation network model, 
which was the origin of the idea of the network growth in our model. This example shows that 
retraining the network after successful insertion of the new neuron improves its integration 
with the existing structure.

To measure the network 
quality  we use

purity = 100 N (OutputSet) / ( N (OutputSet) + N (OutputSet) )sig bkg sig

efficiency = 100 N (OutputSet) / N (InputSet)sig sig

where N (Set) and N (Set) are the numbers of the signal and background events in the Set; sig bkg

InputSet is the set of classified events and OutputSet is the set of events with the network 
answer above a given threshold.

Fig.8. Simple class separation example: a) training set; network output: b) network obtained with dynamic size adjustments; c) network trained with fixed, oversized 
structure; d) oversized network with redundant neurons removed; e) purity-efficiency plot obtained for testing set.
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Fig.9. Two-spiral separation (fuzzy version): a) training set; network output: b) Cascade-Correlation network; c) dynamic MLP network.
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