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Abstract

Ever increasing amounts of genetic information estbm sequential databases require
efficient methods to automatically reveal their lpiggnetic relationships. A framework
for in silico unambiguous analysis of phylogenetic trees, baseasformation contained
in tree’s topology, together with its branches Mlmgis proposed. The resulting,
translated tree has all nodes labeled, with no t@msts on nodes’ degree, and the
subsequent finding of evolutionary pathways froeM@PF-translated tree is robust and
straightforward. Main features of the method:asenall demands on computational time,
and the ability to analyze phylogenies obtainedipto the proposed QPF analysis by
any traditional tree-building technique.

1. Introduction

The extremely large comparative genomic data setsladle today pose escalating
computational challenges for their automatic phglogfic analysis. Existing methods can
be divided in four groupgmaximum parsimony (Felenstein, 1978), maximumlilc®d
(Felenstein, 1981), distance-based (Saitou and M&7), and Bayesian based (Larget
and Simon, 1999), however, all the above are omyristics as constructing proper
phylogenetic tree is a NP-hard problem.

A phylogenetic tree is a way to visualize sequshegolutionary relationships,
and usually it contains information about sequenses! to built tree’s topology, together
with branches length. From mathematical viewpoatphylogenetic tree is a graph,
which contains no cycles (Deo, 1974). This meaas$ letween every node in a graph
there exists one and only one path. Vertices ofea tepresent sequences. Edges
connecting vertices, describe events between segsercdges can be weighted or
unweighted; which means they can express eventstitptevely or not. Number of
adjacent edges in node is a node’s degree. Noddegrée one are leaves, nodes with
degree two or greater are internal nodes. Graphbsamirected — with a root, or
undirected — without a root. Directed graph shdvesdvolution time.

However, building a phylogenetic tree is only gibaing of a process to analyze
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sequences’ set. Many times we seek monelecular rates, population parameters, or
even evolutionary pathways — to obtain that infdiom inference from molecular
phylogenies could be used. Some methods requing wweé topology, for instance
(Slowinski and Guyer, 1989) to compare diversifmatrates of sister clades, or to
measure tree’s balance (Kirkpatrick and Slatkin®93). On the other hand, there are
methods that utilize only branches’ length mainty testing birth-death coalescent
processes (Neet al, 1994), to estimate number of missing taxa ratepopulation
growth (Pybuset al, 2002), or to estimate rates of molecular evohgi (Rambaut,
2000). Finding evolutionary pathways seems to behmonore challenging problem,
because there are virtually no methods of findingl@ionary pathways by exploiting
only information from traditionally made phylogeitetrees. Some new methods were
proposed for evolutionary pathway studiéslasegawaet al, 2009) presents VSPA
method, which trace evolution of serial-sampleduseges divided in clusters; (Reh
al., 2003) developed method that used Neighbor Jpidistance matrix to construct
longitudinal phylogenetic trees.

Inference of evolutionary pathways from traditibywagenerated phylogenetic
trees is a difficult task for two reasons: firsh & traditional phylogenetic tree all
sequences are shown in a tree as leaves — theahtevdes are not attributed to any
particular sequences. We can interpret such ageshowing only sequences that had no
descendants. However, it is more complicated, mra@ven if we analyze a set with
sequences, which have their descendants in thishest will be shown as leaves. Thus,
construction of traditionally generated phylogenetee does not agree with such a tree
interpretation, since internal nodes are treatedaraestors of leaves (Baum, 2008).
Secondly, such traditional tree is often a binaegtwhich means that nodes’ degree is
three or less. It is significant constraint as acestor can have any number of immediate
descendants. Lets consider a sequence that hastmaoréwo descendants, all of them
will be shown on tree as an assemble of auxiliatgrnal nodes and leaves. Binary
character of such a tree is a consequence of dhstalgorithms, which merge
sequences into pairs. Keeping all these drawbacksnind, it means that finding
evolutionary pathways will grow to a problem ofding all ancestor-descendant pairs in
a tree, which would require to always check all tioeles for every sequence — such an
approach will be computationally rather demanding.

The aim of this work was to present an alternatiig@rithm, which we would like
to call the Quick Pathway Finding (QPF), for consting a graph with all nodes labeled,
and with no node degree constraints — after gangrat QPF translated three the
subsequent task of inferring evolutionary pathwaysild be a computationally simple
and rather quick endeavor, which moreover can b#oqmeed in a fully automatic
manner.

2. Interpretation of Nodes
2.1 Leaves interpretation
Nodes in a tree can be divided in two types: [&nmal nodes, and [b] leaves.

Internal nodes are sequences, which are distinchéwve at least one offspring. Nodes
with no offspring are presented as leaves. In @aer, an offspring can be an assemblage
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of internal nodes and/or leaves. Lets consider dirigcted trees, with branches lengths
between sequences equal to a genetic distanceréntfpossible characters of leaves in a
tree are shown irFigure 1 — for clarity presented both as cladograms, towsho
construction of a tree, and phylograms to showadsts between sequences. All trees in
Fig. 1 arise from only two sequences, and can be enciodége Newick format by the
same rule (A:gd, B:dB) — the only differences are in their edge weightsich is why
they all have the same cladogram, but differentlqggrams. In all cases it can be
concluded that A and B are closely related, anctlsseommon ancestor. In the first tree,
da is zero and g is equal to distance between A and B. Note thquesece A and B
must have the same ancestor, from which follows Ahmust be a parent of B. Only in
this solution the distance between A and its paseréro, and distance between B and its
parent is equal to distance between A and B. Irséoend case,pdand @ are equal or
greater than one unit distance (distance betwegnesees which differ by only one
mutation). They have common ancestor, which ispnesent in the analyzed set. All of
them have an offspring. In the third treg, dnd @3 are close to zero, this means that
each sequence should be an ancestor, and a deascahttee same time, which indicates
that sequence A and B must be the same. Thergfstehy using the knowledge about
branches length the family character of all nodes iree can be inferred.

cladogram phylogram
1) A I A
2) A A
3) . A A

Figure 1. Different types of nodes in a phylogenetic tree.

2.2 Character of Internal Nodes

Unfortunately, in traditionally build phylogenetiees all sequences are treated as
leaves, no matter if they have any offspring or. i&ch trees treat internal nodes as
auxiliary nodes to hold other nodes, or as inforoma&bout potential ancestor sequence,
which is not present in the analyzed d&g(re 2a). This could pose a potential trap in
designing algorithm analyzing evolutionary pathwags one would expect ancestors to
be closer to root than descendants (in the numbéheoedges between them). Only
sequences on terminal branches (leaves), and thew® observed. All internal branches
of the tree are not observed — if necessary, sagbhences have to be estimated by the
reconstruction (Rert al., 2003). Therefore, a possible other role of maémodes in
traditionally build trees might be to represent gmiital ancestor sequence[s]. This
situation can happen only when all adjacent edgesghts are greater than an unit
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distance — a necessary condition, as in any ottige eveights’ configuration such an

internal node will be just an ordinary auxiliaryde The ambiguity of leaves’ character,
and internal nodes’ meaning in traditional phylogtentrees contributes to difficulties in

efficient analysis of evolutionary pathwayssillico. To alleviate this problem was the
goal of the present study. The next section dessrin algorithmic recipe, which

considers character of all nodes in a traditioneé¢,tand then attributes them with an
appropriate role in a translated evolutionary {fégure 2b).

internal node
d}. E A dﬂﬂfi
ﬂﬁ

] na label leaves

T
el | B =] C~ intemal node

—E] no label

leaves

et | [}
|:| { — pseudo leaf a;jﬂfz
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Figure 2. A schematic phylogenetic treea)(typical reconstructed phylogenetic tree, which
contains internal nodes without labels — writterNiewick notationa as: ((Axd B:d2):dp, C.0);

(b) phylogenetic tree with all nodes labeled obtaifresn the tree ind), written in Newick
notation as((A:d0+d1, B:d0+d2)C:0); in both panelsis the ancestor ok andB.

3. The Algorithm

The proposed algorithm consists of two stagist, to rebuild traditional
phylogenetic tree, and then to find evolutionarthpays in the resulting QPF tree. At
the beginning algorithm reads the input phylogen#tee T=G(V, E) written in the
Newick format. TheBFSalgorithm is used to find distané® between the root and all
other nodes, expressed as a number of edges. Inetttestep, nodes are ordered by
descending values &j. Translation to a new treE=G(V’, E’) begins from the largest

value of Rj. For each translated node, two types of behavaésr e distinguished,

depending on node’s degree. For each node a faimisacter of the leading edge weight
have to be decided, as described in section 2.1a fkseshold we assume half of unit
distance ¢.f. the discussion in section 5. for details). Whedew leading edge weight is
smaller tharh we treat it as a node without offspring (a child); weight equal or greater
thanh we treat it as a node with offspring (a parent)ed a new node is made in the
QPF treeT’. It has the same label and leading edge weighthieasriginal node, and its
corresponding node in QPF needs to be remembeth will be required in further
algorithm’s steps. All internal nodes convey théimation about tree topology, and
during internal node’s translation we infer newhgated nodes’ position. Before that, it
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is necessary to designate for all the nodes, hgltheé considered node, their family
character using procedure described above. Ineawhsn an internal node holds nodes,
that after translation would acquire the followisghemeone of them is a parental node
(marked asA), and the rest are child-character nodes, forclkild nodes we need to
remember as their ancestor this parental nadefter that, theA node’s edge weight is
updated by adding the internal node’s leading edgjght, and we need to remember for
that internal node its corresponding nodéaSuch a treatment is necessary, because the
parent node should be present also when all futtheslations will be considered. If an
internal node holds only nodes, which after trammtawould act as child nodes, then all
of them are moved to the internal node, which dlyedolds the node under
consideration. Before moving nodes we increasealdes’ leading edge weights by the
leading edge weight of the considered internal ntddshould be pointed out, that it is not
possible to contain in one internal node two nodék a parent character, as we only
consider unique sequences in the analyzed set:. thdteslation of all nodes of the input
tree we end with pairs of ancestor-descendant segsefrom which it is relatively easy
to reconstruct evolutionary pathways. The resultiagslated tree is then saved in the
Newick format.

3.1 Algorithm’s steps

1. Read the tre&=G(V, E) remember for every nodein V, the nodes which it holds
marked asC, and node which holdg marked a$, and leading edge weight, marked as
D;

2. Use the BFS to compute the number of edRydetween root and all nodesn T;

3. Order nodes by descendin&;, and push them to priority quelg

4. Repeat steps 5, 6, 7 uritils not empty;

5. Get node with largestR fromL, and pop it back fror,;

6. If v has a label, make a nogen QPF tree with label, and leading edge weightas
remember for corresponding nodgin QPF;

7. If v has no label, decide family character for everyenm C like in the step 8:

a) if among the node€ exists one with a parent character marked\athen we
need to remember for all the nodeCrtheir ancestor a8; and then to add for
the A the leading edge’s weight — that is the weight;adnd finally to remember
theA as a corresponding ancestral node; of

b) if in the node< all are children, we move them to the n®&jehen the children,
for all moved nodes, need to add to their leadidges’ weight the distance of
considered node’s leading edge weibht

8. Decision step for node
a) if vincoming edge’s weight k, then node’s character is a parent;
b) if v incoming edge’s weight >k, then node’s character is a child;

For the node analysis we make use of geometrigalrithm known as a sweep
line (Corment et al., 1989). First, all nodes argjgrted to one dimensionR;, and then
we start sweeping (translate) from the highRstbecause nodes (which such internal
node holds) will always have largBr. From this follows that during translation of such
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internal node its children were already translafBoe diagram of a tree sweeping in
shown inFig. 3, and the pseudocode of QPF algorithm is shoviign4.

ﬁ
ﬁ

ﬁﬁ

e —
—
-—

sweeping
Figure 3. The diagram of tree sweeping.

For finding evolutionary pathways present in theuteng QPF tree, between each
node and the root DFS-like recursion is used. Dusetessity of sorting nodes in one of
the steps, the complexity of the algorithm is O@g V), where V is number of nodes in
the input, traditional phylogenetic tree. The ofbeai complexity is much better than if we
would search for a pathway between every nodetarmhrent. For this purpose we could
use Dijkstra algorithm, with complexity for rareaghs O(E log V), and then for all
nodes the complexity will became O(V*E log V).
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struct Node {

label; // label if exists

p; // parent

c; // array of holding nodes

d; // leading edge’s weight

ri; // number of edges from root

tr; // pointer to the corresponding translated node in QPF

ch; // node’s character in QPF (a parent or a child)

}

Input:
Tree T (v) // v - nodes of a tree
Treshold h // half of unit distance

Algorithm:

Build an empty tree QPF;
DFS(T); // start from root, calculate v->ri
Push all v to priority queue L, order by v->ri, descending;

Until L is not empty:
Get v with the highest v->ri;
If v->label exists:
Make an empty node q;
g->label = v->label;
g->d = v->d;
v->tr = q;
Add g to QPF;
IF v->label does not exist:
For each v->c: // nodes translation
If v->c[i]l->tr->d >= h:
v->c[i] ->tr->ch = child;
If v->c[i]l->tr->d < h:
v->c[i] ->tr->ch = parent;
If exists v->c[i]l->tr->ch equal to parent, mark it as A:
For each v->c¢, with v->c[i]->tr->ch equal to child:
v->c[il->tr->p = A;
A->c.Add(v->c[i] ->tr);
A->d += v->d;
v->tr = A;
If all v->c[i]l ->tr->ch equal to child:
For each v->c:
v->c[i] ->tr->d += v->d;
v->p->c.Add(v->c[il);
Pop v from L;

BFS(QPF); // start from leaves (g->ch equal to child), find pathways

Output:
the translated QPF tree // in Newick format
the description of pathways // in a text file

Figure 4. The pseudocode of the QPF algorithm. The dat&tsite is described first — the same
structure is used by the algorithm for both traaiél trees and QPF trees. The operatof* “

denotes that a structure’s variable is called. derator ©” means that a function described after
the ,dot” is called to operate on a given variable.

4. Performance Results

To examine the performance of the algorithm séwsets of artificial sequences
were generated. All sequences were representettibgssof binary characters — for the
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root sequence all characters were set to “0”. Rrpgequences were then obtained by
random changes from ‘0’ to ‘1’, resulting in pertfethylogeny (Gusfield, 1991), as only
one change at each position was applied. The nuofb@escendants for each sequence
was determined randomly. For a set of sequences dfeated their true evolutionary
pathways are of course always known. Nine sets generated, with sizes N = {10, 20,
50, 100, 200, 500, 1000, 2000, 5000} sequencesectsply. For each set, its
phylogenetic tree was computed by the Neighboridgimlgorithm (Saitou and Nei,
1987), and re-rooted. The NJ trees were then @iy QPF, and their evolutionary
paths were calculated as described eaffigure 5 shows a traditional phylogenetic tree,
and a corresponding translated QPF tree for a fsé¢mosequences. In theable 1

performance of the algorithm is shown, confirmingr estimate of the procedure’s
complexity, which is very nearly linear.

No. of Time
sequences in [seconds]
the set
10 0.022485
20 0.016908
50 0.018563
100 0.037877
200 0.061501
500 0.132665
1000 0.252395
2000 0.547458
5000 1.246603

Table.1.The number of sequences in a set, and the corrésgpaxecution times.
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Figure 5. Panel(a) — the cladogram of a phylogenetic tree obtaingdhle Neighbor Joining
method; panelly) —the cladogram of the QPF tree obtained from the shown in the paned)(
Both trees were made from a set of 10 sequence$. Iebel consist of the sequence’s number,
and after underscore ‘ ', the number of the pasesgquence, root sequence has the label “0".

5. Robustness
5.1. Data and methods

To examine an impact of tree imperfections on thelwionary pathways
obtained by the QPF algorithm, two kinds of ari#ficequence sets were generated using
Monte Carlo methods. In the first type of sets,salfjuences were binary, coded, with
chain lengths of 2000 characters each (this cooredp roughly to 1000 nucleotides).
Between an ancestor and each descendant therdweas @xactly one mutation, and the
number of descendants was randomly drawn from(@héd) range, wherdd denotes
maximum number of descendants. There was an adalitimondition on a number of
children drawn — to always produce a predefined bemof sequences [when a number
of generated sequences was smaller than requéisezdas the last generated sequence
we have drawn randomly the number of children fr(im D)]. All mutations were
randomly distributed. Mutational event comprised abfanging a randomly selected
position to an opposite character. Resulting secpewere requested to be unique.

The second kind of sets comprised of pseudo-reckatide sequences £1701
nucleotides each), the original seeding sequence taken from GenBank, and then
descendants were Monte Carlo generated from igrder to have a full information
recorded concerning all evolutionary pathways preseeach set. Mutation events were
allowed to occur if a random numbat drawn from an interval (0;1) was smaller tHan
exp(m * L) wherem is mutation frequency coefficient. In every mutatstep, number of
descendants of a sequence was examined, and wiglsnranumbep,, drawn from (O,

1) was smaller thaexp(r * C) then a new sequence was created. The param@étess:
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the number of children that a sequence alreadydraly, is coefficient which regulates
the number of descendants. All mutations were éguabbable, and uniqueness of
sequences was not enforced.

Four collections A-D) of sequence sets were generated by Monte Cadtines as
described above, for set sizés{10, 20, 50, 100, 200, 500, 1000}

A. 500 binary sequences sets for each si2¢ imith about 50% leaves to internal
nodes ratio in their treeB=3;

B. 100 binary sequences sets for each si2g with about 30% leaves to internal
nodes ratio in their treeB=5;

C. 100 binary sequences sets for each size in by about 60% leaves to
internal nodes ratio in their tred372;

D. 100 pseudo-real nucleotide sequences sets, witht &086 leaves to internal
nodes ratio in their trees; parametens:0.001, r=0.15.

5.2 Trees quality

The efficiency of evolutionary pathways’ finding pnds mostly on the input
phylogenetic tree’s quality, and for large sequesets might still pose a problem. The
guestion arises as to what extent the QPF algoritam cope with traditionally built
trees’ imperfections. In the QPF approach edgeighte distribution plays a crucial role
as it is used to infer family character of nodesal perfect phylogeny’s tree all edge
weights should be multiples of a unitary distanee,the pathway length between the
nodes strictly represents distance between them.perfect phylogeny there are no two
identical mutations at the same positiblowever, when analyzing a real sequence set
such situation is not uncommon - the same mutattansoccur at the same positions.
Therefore, the edges’ weights distribution willdisturbed, and not all weights would be
multiples of unitary distance. Such disturbed dsiion depends on few factors. A
bigger chance for a noisy tree occurs when: (i)aha&yzed set consist a large number of
sequences; (ii) sequences chain’s lengths are ;sfiialthe number of characters which
code each position in the chain is small; (iv) thetations tend to be not distributed
randomly throughout the chain (and also througladiine domain — mostly due to biases
in the time of samples isolation, and the numbérsatated sequences).

5.3 QPF robustness

The typical edge weights’ distributions for sets @ sequences, and 1000
sequences are shownkig. 6aand6b respectively. For the former set, a chance to have
a noisy tree is rather small, so a bimodal distrdvuwith the two clear peaks is observed
(at values which are multiplies of unitary distang@n the other hand, as the number of
sequences increases, the chance to have a nasgrows. The=ig. 6b shows, that for
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the set of 1000 sequences, there were some with vhkies slightly different from
multiplies of unitary distance. The improper distiiion would have, of course, an
impact on a tree topology, and quite often leadssequently to a misleading tree’s
construction. Two peaks are observed because, nerged sets, all sequences differ
always by exactly one mutation. Fig. 6a nine edges are observed with their weights
equal to unit distance, each edge represents modhtevent between sequences (to
generate 10 sequences there must be 9 mutaticiasjpaally there are seven edges with
zero weights — they represent auxiliary nodes,antes of a parent character. When the
number of mutations grows, the number of observeakp increases respectively. In
contrast, the distribution of edges’ weights fag QPF tree is significantly different, as in
this case only edges’ weights are observed, repieagemutations between sequences
directly. So, should there were only single mutaiothen the QPF edges’ weights
distribution must have only one peak at an unitatise, there are no any edges’ weights
equal to zero in QPF, as auxiliary nodes do noeapm the QPF tree.

9r 1000
al 900+
800t
700t
500 |

500 F

Mo. of edges
Mo. of edges

o}
a0}
2r 20}

r 10

. ‘ ‘ . ‘ . . ‘ . . .
001 o 001 0.0z 0.03 0.04 0.os -0.01 o 0.01 0.0z 0.03 0.04 0.05 0.06
Edge weight Edge weight

a) b)

Figure 6. The distributions of the edge weights in traditioNd phylogenetic trees from the set
of: (a) 10 sequences; and)(1000 sequences.

In a case of improper choice of the threshold vaiueould lead to a singular
situation — there would be (in the QPF topologyisiea step) two nodes with parent’s
character, but for a descendant only one pargmissible. This can happen when setting
a threshold value very close to a unit distanceg set of sequences is not unique. Both
situations would appear abnormal to the QPF algoritShould this happen nonetheless,
then an error message is generated, to the effattat decision for further analysis of
edges’ weights is necessary. In a case when leaglilggs’ weights of two nodes
considered are equal, this would mean that theguessces are identical, and
consequently one sequence should be excluded fngnfuather analysis. On the other
hand, when leading edges’ weights are differeigordhm makes a decision, that one of
considered nodes is a parent (the one with a ladge weight), and the other node is
treated as a child.

Therefore, unless a traditional phylogenetic teeexcessively noisy (in as sense
of both: edge’s weights distribution, and tree’sdlogy) it is not a problem to obtain an
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acceptable efficiency of reconstructed evolutionpathways by using a judiciously
adjusted threshold decision valuehofAs the accuracy of the QPF algorithm depends on
the valueh, to check the actual QPF performance, the corfértte’) evolutionary
pathways were recorded for every generated adif®equence set, their phylogenetic
trees were obtained by the Neighbor Joining mei{8aitou and Nei, 1987), each tree
was then re-rooted from it's primary ancestor, dmally the QPF translation was
performed several times using different threshbldvalues, to compare the ‘true’
evolutionary pathways with the QPF-reconstructedsohe unit distance is 1/2000 *
100 = 0.05 for binary sets. It is not necessargheck values oh equal or near 0 and
0.05 for binary sets, because for such threshaltdgodes would be treated either like a
child, or like a parent. Accordingly, values bf= {0.005; 0.01; 0.015; 0.015; 0.02;
0.025; 0.03; 0.035; 0.04; 0.045; 0.04€jre examined.

% correct paths

97 60
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 0.005 001 0015 002 0.025 0.03 0.035 0.04 0.045 0.05
threshold [h] threshold [h]

% correct pairs

98.6 1 ! ! i L 1 98.2 ! ! ! ! | I !
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 0.005 0.01 0.015 0.02 0025 0.03 0.035 0.04 0.045 0.05
threshold [h] threshold [h]
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threshold [h] threshold [h]
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Figure 7. The percentages of correctly reconstructed ancdstsrendant pairs, and evolutionary
pathways as a function of the QPF threshotd{0.005; 0.01; 0.015; 0.015; 0.02; 0.025; 0.030G5;
0.04; 0.045; 0.049}or set size4200, 1000} Four collectionsA-D) of sequence sets were used (as
described in textyide suprd, generated with different ratios between internadl terminal nodes of
their phylogenetic trees. For the collectidn in panel &) percentage of correctly found pairs, and
percentage of correct pathways — pamgl The percentages of correct pairs: for the cttbedB —
panel €), and the collectio® — panel ¢). And finally, for the collectiod of pseudo-real nucleotide
sequences sets their correct pairs — paebfd their pathways — pané).(In all panels sets’ sizes
are marked by squares (dashed lines) for 200 segsesets, and by stars (solid lines) for 1000
sequences sets.

We have found that generally the valuehofaken close to th&-unit distance
will produce the highest ratios of correctly redonsted ancestor—descendant pairs and
evolutionary pathways. Ifrigure 7 the averages of correctly reconstructed pairs and
paths, calculated each time over a collection oF @Bnslated NJ trees, are shown for
different set sizes. It can be seen that in alefofFig. 7 the respective maximums of
accuracy are close to the-unit distance. However, some fluctuations can be observ
depending on the ratios between the terminal n@dases) to the internal nodes in their
respective trees. For the phylogenetic QPF recactsdtn of trees obtained from the
collectionD of pseudo-real nucleotide sequences sets, thealptialue ofh (Figs. 7e
and 7f) has its maximum shifted slightly into the 0.03edtion — this is due to the
different sequences’ lengths in the correspondetg fevertheless the optimal value is
still close to the respectivi2-unit distance). What is more, for the larger sets, the
percentage of correctly found pairs depends onthhesholdh value, and grows with
sequences’ lengths — this effect is showrkFmure 8. On the other hand, for smaller sets
the accuracy of finding correct evolutionary pagsnearly the same for differemt
thresholds. This happens because, for largertseés are disturbed more often than in a
case of smaller sets.
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Figure 8. Dependence of the percentage correctly reconsttaieestor-descendant pairs (panel
a), and pathways (panb) on the QPF threshold for sets from the collectioA. To examine the
QPF performance, the valuestof {0.005; 0.015; 0.025; 0.035; 0.045%ere used.

The overall accuracy of correctly attributed ancesescendant pairs and paths is
very high, and noteworthy, all the falsely recousted pairs for larger sets were found to
result from the errors in wrongly generated inptes$’ topologies, and this can be
improved only by using more robust algorithm foeithphylogenetic tree construction.
Quality of an input tree for the QPF algorithm dbese an impact on the final accuracy
of the resulting evolutionary pathways.

Conclusions

One of major defects of traditional methods thelpignetic trees construction is
that all molecular sequences are considered asdez\the tree. Here we have proposed
QPF algorithm, which translates a traditional plyglioetic tree, to a tree with all nodes
labeled as to their phylogenetic character — inr#salting tree there are no auxiliary
nodes, nor there are any nodes’ graph-theoretiegle@® constraints. Translated tree
forms an adequate data structure, optimized fouiekgevolutionary pathways finding.
Therefore, although a resulting, translated treghinlose some information, as a side
effect — should there be any missing ancestorsgregtent in an analyzed sequences set),
it is not necessarily a drawback, as for evoluttgnaathways analysis only available
sequences can be used anyway. The QPF is a rabust,technique for an unambiguous
labeling and analysis of phylogenetic trees geerdray any traditional method of user’s
choice. The assumption that the threshold valug optimal when is set to tHé-unit
distance, has confirmed the role of this thresheddacting like a decision classifier
distinguishing nodes of traditional phylogenetetinto two classes — with a parent’s, or
a child’s character. From a practical viewpoing groper choice of thie threshold value

Ptonski, Radomski - QPF 14



provide well over 95% accuracy, even for largeesredespite a noise always present in
traditionally generated trees.

The QPF algorithm was implemented in C++, and caolitained upon a written
request from the authors. As an input it requires-eooted, traditional phylogenetic tree,
written in the Newick format, and as an outputdhgrates a QPF translated tree (also in
the Newick format), and a reconstructed evolutigrzathways elucidation (saved as a
text file).
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