
Płoński, Radomski - QPF 1 

Quick Path Finding – Quick Algorithmic Solution for  Unambiguous Labeling of 
Phylogenetic Tree Nodes 

 
Piotr Płoński1,2, and Jan P. Radomski 1* 

 
1 Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw 

University, Pawińskiego 5A, Bldg. D, PL–02106 Warsaw, Poland 
2 Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 

PL-00-665 Warsaw, Poland 
 

Keywords: “quick path finding algorithm”, “neighbor joining algorithm”, “phylogenetic 
analysis”, “phylogenetic tree”, “Newick format”, “automatic node labeling” 
 
Abstract 
 
Ever increasing amounts of genetic information stored in sequential databases require 
efficient methods to automatically reveal their phylogenetic relationships. A framework 
for in silico unambiguous analysis of phylogenetic trees, based on information contained 
in tree’s topology, together with its branches length, is proposed. The resulting, 
translated tree has all nodes labeled, with no constraints on nodes’ degree, and the 
subsequent finding of evolutionary pathways from the QPF-translated tree is robust and 
straightforward. Main features of the method are: small demands on computational time, 
and the ability to analyze phylogenies obtained prior to the proposed QPF analysis by 
any traditional tree-building technique. 
 
1. Introduction  
 
The extremely large comparative genomic data sets available today pose escalating 
computational challenges for their automatic phylogenetic analysis. Existing methods can 
be divided in four groups: maximum parsimony (Felenstein, 1978), maximum likelihood 
(Felenstein, 1981), distance-based (Saitou and Nei, 1987), and Bayesian based (Larget 
and Simon, 1999), however, all the above are only heuristics as constructing proper 
phylogenetic tree is a NP-hard problem. 
 A phylogenetic tree is a way to visualize sequences’ evolutionary relationships, 
and usually it contains information about sequences used to built tree’s topology, together 
with branches length. From mathematical viewpoint, a phylogenetic tree is a graph, 
which contains no cycles (Deo, 1974). This means that between every node in a graph 
there exists one and only one path. Vertices of a tree represent sequences. Edges 
connecting vertices, describe events between sequences. Edges can be weighted or 
unweighted; which means they can express events quantitatively or not. Number of 
adjacent edges in node is a node’s degree. Nodes of degree one are leaves, nodes with 
degree two or greater are internal nodes. Graph can be directed – with a root, or 
undirected – without a root. Directed graph shows the evolution time. 
 However, building a phylogenetic tree is only a beginning of a process to analyze 
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sequences’ set. Many times we seek more: molecular rates, population parameters, or 
even evolutionary pathways – to obtain that information, inference from molecular 
phylogenies could be used. Some methods require only tree topology, for instance 
(Slowinski and Guyer, 1989) to compare diversification rates of sister clades, or to 
measure tree’s balance (Kirkpatrick and Slatkinm, 1993). On the other hand, there are 
methods that utilize only branches’ length mainly for testing birth-death coalescent 
processes (Nee et al., 1994), to estimate number of missing taxa rates of population 
growth (Pybus et al., 2002), or to estimate rates of molecular evolutions (Rambaut, 
2000). Finding evolutionary pathways seems to be much more challenging problem, 
because there are virtually no methods of finding evolutionary pathways by exploiting 
only information from traditionally made phylogenetic trees. Some new methods were 
proposed for evolutionary pathway studies: (Hasegawa et al., 2009) presents vSPA 
method, which trace evolution of serial-sampled sequences divided in clusters; (Ren et 
al., 2003) developed method that used Neighbor Joining distance matrix to construct 
longitudinal phylogenetic trees. 
 Inference of evolutionary pathways from traditionally generated phylogenetic 
trees is a difficult task for two reasons: first, in a traditional phylogenetic tree all 
sequences are shown in a tree as leaves – the internal nodes are not attributed to any 
particular sequences. We can interpret such a tree as showing only sequences that had no 
descendants. However, it is more complicated, because even if we analyze a set with 
sequences, which have their descendants in this set, they will be shown as leaves. Thus, 
construction of traditionally generated phylogenetic tree does not agree with such a tree 
interpretation, since internal nodes are treated as ancestors of leaves (Baum, 2008). 
Secondly, such traditional tree is often a binary tree, which means that nodes’ degree is 
three or less. It is significant constraint as an ancestor can have any number of immediate 
descendants. Lets consider a sequence that has more than two descendants, all of them 
will be shown on tree as an assemble of auxiliary internal nodes and leaves. Binary 
character of such a tree is a consequence of clustering algorithms, which merge 
sequences into pairs. Keeping all these drawbacks in mind, it means that finding 
evolutionary pathways will grow to a problem of finding all ancestor-descendant pairs in 
a tree, which would require to always check all the nodes for every sequence – such an 
approach will be computationally rather demanding. 

The aim of this work was to present an alternative algorithm, which we would like 
to call the Quick Pathway Finding (QPF), for constructing a graph with all nodes labeled, 
and with no node degree constraints – after generating a QPF translated three the 
subsequent task of inferring evolutionary pathways would be a computationally simple 
and rather quick endeavor, which moreover can be performed in a fully automatic 
manner. 
 
2. Interpretation of Nodes 
 

2.1 Leaves interpretation 
 

Nodes in a tree can be divided in two types: [a] internal nodes, and [b] leaves. 
Internal nodes are sequences, which are distinct but have at least one offspring. Nodes 
with no offspring are presented as leaves. In particular, an offspring can be an assemblage 
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of internal nodes and/or leaves. Lets consider only directed trees, with branches lengths 
between sequences equal to a genetic distance. Different possible characters of leaves in a 
tree are shown in Figure 1 – for clarity presented both as cladograms, to show 
construction of a tree, and phylograms to show distances between sequences. All trees in 
Fig. 1 arise from only two sequences, and can be encoded in the Newick format by the 
same rule (A:dA, B:dB) – the only differences are in their edge weights, which is why 
they all have the same cladogram, but different phylograms. In all cases it can be 
concluded that A and B are closely related, and have a common ancestor. In the first tree, 
dA is zero and dB is equal to distance between A and B. Note that sequence A and B 
must have the same ancestor, from which follows that A must be a parent of B. Only in 
this solution the distance between A and its parent is zero, and distance between B and its 
parent is equal to distance between A and B. In the second case, dA and dB are equal or 
greater than one unit distance (distance between sequences which differ by only one 
mutation). They have common ancestor, which is not present in the analyzed set. All of 
them have an offspring. In the third tree, dA and dB are close to zero, this means that 
each sequence should be an ancestor, and a descendant at the same time, which indicates 
that sequence A and B must be the same. Therefore, just by using the knowledge about 
branches length the family character of all nodes in a tree can be inferred. 
 

 
 

Figure 1. Different types of nodes in a phylogenetic tree. 
 
 

2.2 Character of Internal Nodes 
 
 Unfortunately, in traditionally build phylogenetic trees all sequences are treated as 
leaves, no matter if they have any offspring or not. Such trees treat internal nodes as 
auxiliary nodes to hold other nodes, or as information about potential ancestor sequence, 
which is not present in the analyzed set (Figure 2a). This could pose a potential trap in 
designing algorithm analyzing evolutionary pathways, as one would expect ancestors to 
be closer to root than descendants (in the number of the edges between them). Only 
sequences on terminal branches (leaves), and the root are observed. All internal branches 
of the tree are not observed – if necessary, such sequences have to be estimated by the 
reconstruction (Ren et al., 2003). Therefore, a possible other role of internal nodes in 
traditionally build trees might be to represent potential ancestor sequence[s]. This 
situation can happen only when all adjacent edges’ weights are greater than an unit 
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distance – a necessary condition, as in any other edge weights’ configuration such an 
internal node will be just an ordinary auxiliary node. The ambiguity of leaves’ character, 
and internal nodes’ meaning in traditional phylogenetic trees contributes to difficulties in 
efficient analysis of evolutionary pathways in sillico. To alleviate this problem was the 
goal of the present study. The next section describes an algorithmic recipe, which 
considers character of all nodes in a traditional tree, and then attributes them with an 
appropriate role in a translated evolutionary tree (Figure 2b). 
 

 
Figure 2. A schematic phylogenetic tree; (a) typical reconstructed phylogenetic tree, which 
contains internal nodes without labels – written in Newick notationa as: ((A:d1, B:d2):d0, C:0); 
(b) phylogenetic tree with all nodes labeled obtained from the tree in (a), written in Newick 
notation as: ((A:d0+d1, B:d0+d2)C:0); in both panels C is the ancestor of A and B. 
 
3. The Algorithm 
 
 The proposed algorithm consists of two stages: first, to rebuild traditional 
phylogenetic tree, and then to find evolutionary pathways in the resulting QPF tree. At 
the beginning algorithm reads the input phylogenetic tree T=G(V, E) written in the 
Newick format. The BFS algorithm is used to find distance Ri between the root and all 
other nodes, expressed as a number of edges. In the next step, nodes are ordered by 
descending values of Ri. Translation to a new tree T’=G(V’, E’) begins from the largest 
value of Ri. For each translated node, two types of behavior can be distinguished, 
depending on node’s degree. For each node a family character of the leading edge weight 
have to be decided, as described in section 2.1. As a threshold we assume half of unit 
distance (c.f. the discussion in section 5. for details). When node's leading edge weight is 
smaller than h we treat it as a node without offspring (a child); for weight equal or greater 
than h we treat it as a node with offspring (a parent). Then a new node is made in the 
QPF tree T’. It has the same label and leading edge weight as the original node, and its 
corresponding node in QPF needs to be remembered – this will be required in further 
algorithm’s steps. All internal nodes convey the information about tree topology, and 
during internal node’s translation we infer newly created nodes’ position. Before that, it 
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is necessary to designate for all the nodes, held by the considered node, their family 
character using procedure described above. In a case when an internal node holds nodes, 
that after translation would acquire the following scheme: one of them is a parental node 
(marked as A), and the rest are child-character nodes, for all child nodes we need to 
remember as their ancestor this parental node A. After that, the A node’s edge weight is 
updated by adding the internal node’s leading edge weight, and we need to remember for 
that internal node its corresponding node as A. Such a treatment is necessary, because the 
parent node should be present also when all further translations will be considered. If an 
internal node holds only nodes, which after translation would act as child nodes, then all 
of them are moved to the internal node, which already holds the node under 
consideration. Before moving nodes we increase all nodes’ leading edge weights by the 
leading edge weight of the considered internal node. It should be pointed out, that it is not 
possible to contain in one internal node two nodes with a parent character, as we only 
consider unique sequences in the analyzed set. After translation of all nodes of the input 
tree we end with pairs of ancestor-descendant sequences, from which it is relatively easy 
to reconstruct evolutionary pathways. The resulting translated tree is then saved in the 
Newick format. 
 
3.1 Algorithm’s steps 
 
1. Read the tree T=G(V, E), remember for every node v in V, the nodes which it holds 
marked as C, and node which holds v, marked as P, and leading edge weight, marked as 
D; 
2. Use the BFS to compute the number of edges Ri between root and all nodes v in T; 
3. Order nodes v by descending Ri, and push them to priority queue L; 
4. Repeat steps 5, 6, 7 until L is not empty; 
5. Get node v with largest Ri from L, and pop it back from L; 
6. If v has a label, make a node q in QPF tree with label, and leading edge weight as v, 
remember for v corresponding node q in QPF; 
7. If v has no label, decide family character for every node in C like in the step 8: 

a) if among the nodes C exists one with a parent character marked as A, then we 
need to remember for all the nodes in C their ancestor as A; and then to add for 
the A the leading edge’s weight – that is the weight of v; and finally to remember 
the A as a corresponding ancestral node of v; 

b) if in the nodes C all are children, we move them to the node P; then the children, 
for all moved nodes, need to add to their leading edges’ weight the distance of 
considered node’s leading edge weight D; 

8. Decision step for node v: 
a) if v incoming edge’s weight < h, then node’s v character is a parent; 
b) if v incoming edge’s weight >= h, then node’s v character is a child; 

 

For the node analysis we make use of geometrical algorithm known as a sweep 
line (Corment et al., 1989). First, all nodes are projected to one dimension - Ri, and then 
we start sweeping (translate) from the highest Ri, because nodes (which such internal 
node holds) will always have larger Ri. From this follows that during translation of such 
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internal node its children were already translated. The diagram of a tree sweeping in 
shown in Fig. 3, and the pseudocode of QPF algorithm is shown in Fig. 4. 

 

 
Figure 3. The diagram of tree sweeping. 

 

For finding evolutionary pathways present in the resulting QPF tree, between each 
node and the root DFS-like recursion is used. Due to necessity of sorting nodes in one of 
the steps, the complexity of the algorithm is O(V log V), where V is number of nodes in 
the input, traditional phylogenetic tree. The obtained complexity is much better than if we 
would search for a pathway between every node and its parent. For this purpose we could 
use Dijkstra algorithm, with complexity for rare graphs O(E log V), and then for all 
nodes the complexity will became O(V*E log V). 
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Figure 4. The pseudocode of the QPF algorithm. The data structure is described first – the same 
structure is used by the algorithm for both traditional trees and QPF trees. The operator “->“ 

denotes that a structure’s variable is called. The operator “.” means that a function described after 
the „dot” is called to operate on a given variable. 
 
4. Performance Results 
 
 To examine the performance of the algorithm several sets of artificial sequences 
were generated. All sequences were represented by strings of binary characters – for the 
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root sequence all characters were set to “0”. Progeny sequences were then obtained by 
random changes from ‘0’ to ‘1’, resulting in perfect phylogeny (Gusfield, 1991), as only 
one change at each position was applied. The number of descendants for each sequence 
was determined randomly. For a set of sequences thus created their true evolutionary 
pathways are of course always known. Nine sets were generated, with sizes N = {10, 20, 
50, 100, 200, 500, 1000, 2000, 5000} sequences respectively. For each set, its 
phylogenetic tree was computed by the Neighbor-Joining algorithm (Saitou and Nei, 
1987), and re-rooted. The NJ trees were then translated by QPF, and their evolutionary 
paths were calculated as described earlier. Figure 5 shows a traditional phylogenetic tree, 
and a corresponding translated QPF tree for a set of ten sequences. In the Table 1 
performance of the algorithm is shown, confirming our estimate of the procedure’s 
complexity, which is very nearly linear.  

 

No. of 
sequences in 

the set 

Time 
[seconds] 

10 0.022485 

20 0.016908 
50 0.018563 
100 0.037877 
200 0.061501 
500 0.132665 

1000 0.252395 
2000 0.547458 
5000 1.246603 

 
Table.1. The number of sequences in a set, and the corresponding execution times. 
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a) 

 
b) 

 

Figure 5. Panel (a) – the cladogram of a phylogenetic tree obtained by the Neighbor Joining 
method; panel (b) – the cladogram of the QPF tree obtained from the tree shown in the panel (a). 
Both trees were made from a set of 10 sequences. Each label consist of the sequence’s number, 
and after underscore ‘_’, the number of the parent’s sequence, root sequence has the label “0”. 

 

5. Robustness 

5.1. Data and methods 

To examine an impact of tree imperfections on the evolutionary pathways 
obtained by the QPF algorithm, two kinds of artificial sequence sets were generated using 
Monte Carlo methods. In the first type of sets, all sequences were binary, coded, with 
chain lengths of 2000 characters each (this corresponds roughly to 1000 nucleotides). 
Between an ancestor and each descendant there was always exactly one mutation, and the 
number of descendants was randomly drawn from the (0; D) range, where D denotes 
maximum number of descendants. There was an additional condition on a number of 
children drawn – to always produce a predefined number of sequences [when a number 
of generated sequences was smaller than requested, then as the last generated sequence 
we have drawn randomly the number of children from (1; D)]. All mutations were 
randomly distributed. Mutational event comprised of changing a randomly selected 
position to an opposite character. Resulting sequences were requested to be unique.  

The second kind of sets comprised of pseudo-real nucleotide sequences (L=1701 
nucleotides each), the original seeding sequence was taken from GenBank, and then 
descendants were Monte Carlo generated from it, in order to have a full information 
recorded concerning all evolutionary pathways present in each set. Mutation events were 
allowed to occur if a random number p1, drawn from an interval (0;1) was smaller than 1-
exp(m * L), where m is mutation frequency coefficient. In every mutation step, number of 
descendants of a sequence was examined, and when random number p2, drawn from (0, 
1) was smaller than exp(r * C), then a new sequence was created. The parameters: C is 
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the number of children that a sequence already has, and r is coefficient which regulates 
the number of descendants. All mutations were equally probable, and uniqueness of 
sequences was not enforced. 

Four collections (A-D) of sequence sets were generated by Monte Carlo routines as 
described above, for set sizes N={10, 20, 50, 100, 200, 500, 1000}: 

A. 500 binary sequences sets for each size in N, with about 50% leaves to internal 
nodes ratio in their trees, D=3; 

B. 100 binary sequences sets for each size in N, with about 30% leaves to internal 
nodes ratio in their trees, D=5; 

C. 100 binary sequences sets for each size in N, with about 60% leaves to 
internal nodes ratio in their trees, D=2; 

D. 100 pseudo-real nucleotide sequences sets, with about 50% leaves to internal 
nodes ratio in their trees; parameters: m=0.001, r=0.15. 

 

5.2 Trees quality 

The efficiency of evolutionary pathways’ finding depends mostly on the input 
phylogenetic tree’s quality, and for large sequence sets might still pose a problem. The 
question arises as to what extent the QPF algorithm can cope with traditionally built 
trees’ imperfections. In the QPF approach edge’s weights distribution plays a crucial role 
as it is used to infer family character of nodes. In a perfect phylogeny’s tree all edge 
weights should be multiples of a unitary distance, so the pathway length between the 
nodes strictly represents distance between them. In a perfect phylogeny there are no two 
identical mutations at the same position. However, when analyzing a real sequence set 
such situation is not uncommon – the same mutations can occur at the same positions. 
Therefore, the edges’ weights distribution will be disturbed, and not all weights would be 
multiples of unitary distance. Such disturbed distribution depends on few factors. A 
bigger chance for a noisy tree occurs when: (i) the analyzed set consist a large number of 
sequences; (ii) sequences chain’s lengths are small; (iii) the number of characters which 
code each position in the chain is small; (iv) the mutations tend to be not distributed 
randomly throughout the chain (and also throughout a time domain – mostly due to biases 
in the time of samples isolation, and the numbers of isolated sequences). 

 

5.3 QPF robustness 

 The typical edge weights’ distributions for sets of 10 sequences, and 1000 
sequences are shown in Fig. 6a and 6b respectively. For the former set, a chance to have 
a noisy tree is rather small, so a bimodal distribution with the two clear peaks is observed 
(at values which are multiplies of unitary distance). On the other hand, as the number of 
sequences increases, the chance to have a noisy tree grows. The Fig. 6b shows, that for 
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the set of 1000 sequences, there were some with their values slightly different from 
multiplies of unitary distance. The improper distribution would have, of course, an 
impact on a tree topology, and quite often leads subsequently to a misleading tree’s 
construction. Two peaks are observed because, in generated sets, all sequences differ 
always by exactly one mutation. In Fig. 6a nine edges are observed with their weights 
equal to unit distance, each edge represents mutational event between sequences (to 
generate 10 sequences there must be 9 mutations); additionally there are seven edges with 
zero weights – they represent auxiliary nodes, or nodes of a parent character. When the 
number of mutations grows, the number of observed peaks increases respectively. In 
contrast, the distribution of edges’ weights for the QPF tree is significantly different, as in 
this case only edges’ weights are observed, representing mutations between sequences 
directly. So, should there were only single mutations, then the QPF edges’ weights 
distribution must have only one peak at an unit distance, there are no any edges’ weights 
equal to zero in QPF, as auxiliary nodes do not appear in the QPF tree. 

 

   a)      b) 

Figure 6. The distributions of the edge weights in traditional NJ phylogenetic trees from the set 
of: (a) 10 sequences; and (b) 1000 sequences. 

In a case of improper choice of the threshold value, it could lead to a singular 
situation – there would be (in the QPF topology-decision step) two nodes with parent’s 
character, but for a descendant only one parent is possible. This can happen when setting 
a threshold value very close to a unit distance, or a set of sequences is not unique. Both 
situations would appear abnormal to the QPF algorithm. Should this happen nonetheless, 
then an error message is generated, to the effect that a decision for further analysis of 
edges’ weights is necessary. In a case when leading edges’ weights of two nodes 
considered are equal, this would mean that their sequences are identical, and 
consequently one sequence should be excluded from any further analysis. On the other 
hand, when leading edges’ weights are different, algorithm makes a decision, that one of 
considered nodes is a parent (the one with a lower edge weight), and the other node is 
treated as a child. 

Therefore, unless a traditional phylogenetic tree is excessively noisy (in as sense 
of both: edge’s weights distribution, and tree’s topology) it is not a problem to obtain an 
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acceptable efficiency of reconstructed evolutionary pathways by using a judiciously 
adjusted threshold decision value of h. As the accuracy of the QPF algorithm depends on 
the value h, to check the actual QPF performance, the correct (‘true’) evolutionary 
pathways were recorded for every generated artificial sequence set, their phylogenetic 
trees were obtained by the Neighbor Joining method (Saitou and Nei, 1987), each tree 
was then re-rooted from it’s primary ancestor, and finally the QPF translation was 
performed several times using different threshold h values, to compare the ‘true’ 
evolutionary pathways with the QPF-reconstructed ones. The unit distance is 1/2000 * 
100 = 0.05 for binary sets. It is not necessary to check values of h equal or near 0 and 
0.05 for binary sets, because for such thresholds, all nodes would be treated either like a 
child, or like a parent. Accordingly, values of h = {0.005; 0.01; 0.015; 0.015; 0.02; 
0.025; 0.03; 0.035; 0.04; 0.045; 0.049} were examined.  
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(f) 

Figure 7. The percentages of correctly reconstructed ancestor-descendant pairs, and evolutionary 
pathways as a function of the QPF threshold h = {0.005; 0.01; 0.015; 0.015; 0.02; 0.025; 0.03; 0.035; 
0.04; 0.045; 0.049}, for set sizes {200, 1000}. Four collections (A-D) of sequence sets were used (as 
described in text, vide supra), generated with different ratios between internal and terminal nodes of 
their phylogenetic trees. For the collection A: in panel (a) percentage of correctly found pairs, and 
percentage of correct pathways – panel (b). The percentages of correct pairs: for the collection B – 
panel (c), and the collection C – panel (d). And finally, for the collection D of pseudo-real nucleotide 
sequences sets their correct pairs – panel (e), and their pathways – panel (f). In all panels sets’ sizes 
are marked by squares (dashed lines) for 200 sequences sets, and by stars (solid lines) for 1000 
sequences sets. 

We have found that generally the value of h taken close to the ½-unit distance 
will produce the highest ratios of correctly reconstructed ancestor–descendant pairs and 
evolutionary pathways. In Figure 7 the averages of correctly reconstructed pairs and 
paths, calculated each time over a collection of QPF translated NJ trees, are shown for 
different set sizes. It can be seen that in all panels of Fig. 7 the respective maximums of 
accuracy are close to the ½-unit distance. However, some fluctuations can be observed, 
depending on the ratios between the terminal nodes (leaves) to the internal nodes in their 
respective trees. For the phylogenetic QPF reconstruction of trees obtained from the 
collection D of pseudo-real nucleotide sequences sets, the optimal value of h (Figs. 7e 
and 7f) has its maximum shifted slightly into the 0.03 direction – this is due to the 
different sequences’ lengths in the corresponding sets (nevertheless the optimal value is 
still close to the respective ½-unit distance). What is more, for the larger sets, the 
percentage of correctly found pairs depends on the threshold h value, and grows with 
sequences’ lengths – this effect is shown on Figure 8. On the other hand, for smaller sets 
the accuracy of finding correct evolutionary pairs is nearly the same for different h 
thresholds. This happens because, for larger sets, trees are disturbed more often than in a 
case of smaller sets. 



Płoński, Radomski - QPF 14

0 100 200 300 400 500 600 700 800 900 1000
97.5

98

98.5

99

99.5

100

set size

%
 c

or
re

ct
 p

ai
rs

 

 

h = 0.045

h = 0.035

h = 0.025
h = 0.015

h = 0.005

 

a) 

0 100 200 300 400 500 600 700 800 900 1000
70

75

80

85

90

95

100

set size

%
 c

or
re

ct
 p

at
hs

 

 

h = 0.045

h = 0.035

h = 0.025
h = 0.015

h = 0.005

 

b) 

Figure 8. Dependence of the percentage correctly reconstructed ancestor-descendant pairs (panel 
a), and pathways (panel b) on the QPF threshold h, for sets from the collection A. To examine the 
QPF performance, the values of h = {0.005; 0.015; 0.025; 0.035; 0.045} were used. 

The overall accuracy of correctly attributed ancestor-descendant pairs and paths is 
very high, and noteworthy, all the falsely reconstructed pairs for larger sets were found to 
result from the errors in wrongly generated input trees’ topologies, and this can be 
improved only by using more robust algorithm for their phylogenetic tree construction. 
Quality of an input tree for the QPF algorithm does have an impact on the final accuracy 
of the resulting evolutionary pathways.  

 
Conclusions 
 

One of major defects of traditional methods the phylogenetic trees construction is 
that all molecular sequences are considered as leaves of the tree. Here we have proposed 
QPF algorithm, which translates a traditional phylogenetic tree, to a tree with all nodes 
labeled as to their phylogenetic character – in the resulting tree there are no auxiliary 
nodes, nor there are any nodes’ graph-theoretical degree constraints. Translated tree 
forms an adequate data structure, optimized for a quick evolutionary pathways finding. 
Therefore, although a resulting, translated tree might lose some information, as a side 
effect – should there be any missing ancestors (not present in an analyzed sequences set), 
it is not necessarily a drawback, as for evolutionary pathways analysis only available 
sequences can be used anyway. The QPF is a robust, novel technique for an unambiguous 
labeling and analysis of phylogenetic trees generated by any traditional method of user’s 
choice. The assumption that the threshold value h is optimal when is set to the ½-unit 
distance, has confirmed the role of this threshold as acting like a decision classifier 
distinguishing nodes of traditional phylogenetic tree into two classes – with a parent’s, or 
a child’s character. From a practical viewpoint, the proper choice of the h threshold value 
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provide well over 95% accuracy, even for larger trees, despite a noise always present in 
traditionally generated trees. 

 
The QPF algorithm was implemented in C++, and can be obtained upon a written 

request from the authors. As an input it requires a re-rooted, traditional phylogenetic tree, 
written in the Newick format, and as an output it generates a QPF translated tree (also in 
the Newick format), and a reconstructed evolutionary pathways elucidation (saved as a 
text file). 
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