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Introduction
The 2-D complex analytic signals with single-quadrant spectra have been defined in [1]
and later presented in [2]. Later, a similar hypercomplex quaternionic analytic signal has been
defined [3]. Both approaches use so called Hilbert quadruples. The author of [1] defined three
Hilbert transforms of 2-D functions: two partial transforms of a real function u(x,, x;) denoted
Vi (%, %)=H{u(x,x)} and v,(x,%)=H,{u(x,x)} and a total transform
V(%% )= H{u(xz,xl)}. This paper shows that complex and hypercomplex approaches are

equivalent and in complex/hypercomplex signals the same Hilbert transforms are used. We

consider 2-D analytic signals with a real part given by

U(Xp0 %) = Uge (Xo0 %) +Ugg (X1 X ) Uoe (X2 %) +Ugg (XX, (1)
i.e., a union of even-even (ee), even-odd (eo), odd-even (oe) and odd-odd (00) parts [2] as
follows
_u(xz,x1)+u(x2,—x1)+u(—x2,x1)+u(—x2,—x1)
uee(XZ’X:I.)_ 4 ! (2)
(X, %) U (X, =% ) U (=X, % ) —U (=X, =X, )
ueo(lexl)_ 4 ' (3)
CU(% %) FU (X, =% ) = U (=X, % ) —U (=X, =X, )
uoe(xzixl)_ 4 ' (4)
(X, %) U (X, =% ) —U (=%, X, ) +U (=X, =X, )
uoo(XZ’Xl)_ 4 ' (5)

Notice that in (1)-(5) we used the order of subscripts (xz, x1) (instead of (xi, X2)). It is due

to the notation introduced in [1], [2], where e is a binary number 0 and o is a binary 1. It

means that U, (X,, xl) is an even function w.r.t. x, and an odd function w.r.t. x;. The signs of

terms in nominators of (2)-(5) are equal to products of odd-indexed variables.
A. 2-D Fourier transform of a 2-D real signal

The 2-D Fourier transform (2-D FT) of (1) has the form (we use the imaginary unit e; in
the exponent):

U(f, f,) :J‘J‘u(xz,xl)e’el”‘le’el‘“dxzdx1 (6)
RZ



where o, =271 x and «, =2xzf,X,. The insertion of (1) into (6) yields the spectrum in the

form of a complex sum of four terms:

U(fZ’ fl):Uee _Uoo_el(er+er) @)
where

U, (f,, fl):_” Ug, (X,, X, ) COS 2, COS e, dX, X, , (8)
]RZ

Uy (f,, f1)=” Ug, (X,, %, ) COS @, SiN e, dX, X, , 9)
RZ

U (f, ) :” Uge (X5, %, )SiN @, €0s e, dX, X, , (10)
RZ

Uy (f,, fl):ﬂ Ugo (X1 % )SiN @, Sin ey dx,dx, . (11)
]RZ

B. The Quaternionic Fourier transform of a 2-D real signal

There are various definitions of the quaternionic Fourier transform (QFT). Some authors
[3], [4] use the two-sided form of the QFT introduced by Ell [5]:

QFT (f,, f,)=U, (f,, f,) = [[ e“u(x,, % )& *dx,dx, (12)

RZ

where e; and e, are imaginary units of the algebra of quaternions H with a basis {ei, €2, es}

(the basic properties of quaternions are presented in Appendix A). The insertion of (1) into
(12) yields

Uq(fz’ fl):Uee_elueo_e2U0e+e3Uoo (13)

where all terms are given by (8)-(11) and according to the quaternionic algebra multiplication

rules: e, =ee, (see Appendix A). There exists a formula relating the two-sided QFT and the

standard FT of a real signal u(x,, x;) derived by Pei et al. [6] and given by

1-e 1+e
Ua (£ ) =U (1, £)=24U (=1, ) +23. (14)

The complex analytic signal with a single-quadrant spectrum

In this section, we briefly recall the basic elements of the theory of 2-D analytic signals

with a single-quadrant spectra. We are focused on the complex analytic signal ‘Pl(xz,xl)



with a spectrum in the first quadrant of the frequency space [1], [2] which is defined by the

inverse Fourier transform

‘Pl(xz,xi)zﬁ (1+sgn f,)(1+sgn f,)U (f,, f,)e* e df,df, . (15)
RZ

In the signal domain (X2, X1), the definition (15) corresponds to the convolution

k) =u00) o 505 e o) v L | @9
We get

P06 %) =U (%0 %) =V (%, %)+ [V (%,%) +V; (%0, (17)
where

Vi (%, %) =—¢ [ j sgn( f,)U (f,, f,)e*“ df,df, , (18)

v, (%,%) =& j sgn( f,)U (f,, f,)e*“df,df, (19)

are called partial Hilbert transforms w.r.t. a single variable x; or x, respectively, and

V(X %)= —” sgn f,sgn f,U (f,, f,)e*“ )df,df, (20)
RZ

is a total Hilbert transform w.r.t. (X2, X1).
A. Hilbert transforms in the complex case

Now, let us derive total and partial Hilbert transforms in the form of a sum of their
even-even, even-odd, odd-even and odd-odd parts. We insert the Fourier transform U(f,, f;)
given by (7) into (18)-(20) and yield the following forms of the Hilbert transforms (the full
derivation is presented in Appendix B):

Vi (%, %) = —vl(:‘)) + vl(:e) — vl(o‘:") + vl(:e) , (21)
¥y (%, %) = =V v v, (22)
V(% %) =V v — v v (23)



Let us note that in (21)-(23) upper subscripts indicate the even/odd parity of the
corresponding term of U(f,, f;) given by (7) and the lower subscripts — the even/odd parity of

the corresponding Hilbert transform.
The hypercomplex analytic signal with a single-quadrant spectrum

Again, let us recall the elements of the theory of the hypercomplex analytic signal with a
single-quadrant spectrum defined in [3] using the inverse Quaternionic Fourier Transform

(QFT) of a single-quadrant quaternionic spectrum, i.e.:
¥, (xl,xz)zQFT‘l{(1+sgn( f,))(L+san(f,))U,(f,, fl)}, (24)

i.e., using the same single-quadrant operator as in (15). Using the definition of Ell [4] of

the inverse QFT we have

¥, (xz,xl)zﬂ e (1+sgn f)(1+sgn f,)U, ( f,, f,)e™=df df, . (25)
RZ

Let us remark that there exists an alternative definition of the inverse QFT (called Right-
side QFT) introduced by Ell [4] and also used by Hitzer [5]. It differs from (25) by the order
of terms under the integral. In this case we have

¥, (xz,xi)zﬂ (1+sgn f)(1+sgn f,)U, (f,, f,)e™2edf,df, . (26)
RZ

Let us note the reversed order of indexes in exponents in (26). In our investigations we
use the definition (25) which corresponds in the signal domain to the convolution of the 2-D

real signal u(xi, x2) with the 2-D hypercomplex delta distribution [6]:

) =0l o) v L () e, 2 @)

X, X,

We have

X, Xy XX,
=ux*8(%)5(%,)+e -{u **5(X2)}+e2 -{u *% 5<X1)}+e3 -{u **%} (28)
X X T XX,
and finally

W, (%0 %) = U (X0 % )+ €Y, (X0 % ) 6V, (X5, %, )+ €V (X, X, ). (29)



A. Hilbert transforms in the hypercomplex case

Our goal is to derive the total and partial Hilbert transforms (similarly to (21)-(23)) being
the terms of the quaternionic signal (29). We insert the quaternionic spectrum Uq(f,, f1) given
by (13) into (25) (the full derivation is given in Appendix C) and get the four terms of (29)

v, (%, %) = —vl(:’) + vl(:e) — vl(:") + vl(ie) , (30)
V, (%, %) = —Vg’f) - vgj:) + vgff) + vgi:) , (31)
V(% %) =V =V - v, (32)

We observe that (30)-(31) have the same form as (21)-(23).
Appendix A

Algebra of quaternions

The quaternions form a non-commutative algebra of order 4 over R ,denoted

with H. Its elements q are ordered pairs of complex numbers:

0=(20.2)=((r.5).(r.1)); 25,2, €C, 15,1, 1,1, € R:

0=2o+2- j=(G+0-0)+(r+r-0)- ] (A1)
Applying the Hamilton’s multiplication rules [ ] of imaginary units in H (See Fig. Al), we
obtain

qQ=2Z,+2Z - J=r+0-i+0-j+0-K. (A2)

Table Al

‘ x 1 €1 € €3
' 1

1 (31 (SH) €3

€1 €1 -1 €3 -€2

€- (57) -e3 -1 €1

G ‘ €3 €3 (SH) -€1 -1
a) b)

Fig. A1 Multiplication of imaginary units in H: a) using the Hamilton’s multiplication rule, b) using the table of

multiplication
In Fig. Al a, three successive imaginary units determine one rule of multiplication. The

first two units are respectively a multiplicand and a multiplier and the third one - the product.



If we move clockwise, we have for example, i- j=k and k-i= j. If we multiply the units
counterclockwise, the product gets the minus sign. It means that the multiplication in H is not
commutative and we have j-i=—j-i=—k and i-k=-k-i=—].

Some authors apply another notation of imaginary units (, i.e., they replace i, j, k with ey,
ey, €3 (see Table Al). In algebras of higher orders such a notation is more convenient due to
the large number of imaginary units. So, the general form of a quaternion (A2) is

Q=+ -€+I,-€+I;-€;. (A3)
The conjugate of () is

Q' =r,—r-e—r,-e—r,-e (A4)

and its norm is

|q|:\,"”r02+r12+r22+r32 . (A5)
The quaternions (A3) with ro = 0 are refered as pure quaternions and those with |q| =1 as unit
(unitary) quaternions.
Appendix B

Derivation of Hilbert transforms of a 2-D complex signal with

the first-quadrant spectrum

In this part, we derive the Hilbert transforms (partial and total) starting with the
decomposition of the spectrum of the real signal u(x, X1) into its even-even, even-odd, odd-
even and odd-odd parts. It is known [1], [2] that the partial Hilbert transform vi(Xs, X1) is
given by (18). Introducing the Fourier spectrum of a real signal u (xz, x1) given by (7) into
(18), we have

Vi (% %)
= —el” sgn (,)[ Uy, —Uy, =&, (U, +U,, ) |65 e )df df, =
RZ
= —91” sgn(£,)[ U —Up, =€ (Uge +U,, ) [ cOS (e + @, ) +&;5in (e + ar, ) | difdif, =
RZ
Bl
= ” sgn( f,)U,, cosa, sin e, df ,df, —” sgn( f,)U,, sin a, cos o, df df, — (B1)
R? R?

- H sgn( f,)U,, cos a, cos o, df df, + H sgn( f,)U,, sin o, sin ey df,df,.
R? R?



We apply the following notation: upper subscripts indicate the even/odd parity of the
corresponding term of U(f,, f;) given by (7) and the lower subscripts — the even/odd parity of
the corresponding Hilbert transform. We obtain after reordering the terms

W (0 1) =+ )l 2)

Analogously, the partial Hilbert transform va(x, X1) [1], [2] is given by (19). Repeating the

same procedure as above, we get

VZ(XZ'Xl)

= —el” sgn(f,)[U. —Ugo =& (U +U,, ) ][ cOS(a + a1, )+ 5in (o + ar, ) | if i, =

—H sgn ( f,)U,, sin , cos e, df ,df, J' sgn( f,)U,, cos a, sin a,df df, - (B3)
+H sgn( f,)U,, cos a, cos o, df,df, _[J' sgn( f,)U,, sin &, sin ¢ df ,df,
and finally
V, (%, %)= vg‘::) + vgjf) — vgjf) — vg’:) . (B4)

Analogously, the total Hilbert transform (20) is given by

V(% %)
= —H sgn( f,)sgn(f,)[ U, —U,, —& (U, +U,, ) ][ cos(a, +a, ) +e sin(a, +a, ) |df df, =

—ﬂsgn )sgn ( f,)U., sin a, sin e, df,df, +Hsgn )sgn ( f,)U,, cos a, cos a,dfdf, -

—”sgn )san( f;)U,, sin &, cos e, df ,df, J'_[sgn )san ( f,)U,, cosa, sin e, df,df,.

(B8)

We obtain

V() =V U ) (©9)

oe eo

Appendix C

Derivation of Hilbert transforms of a 2-D hypercomplex signal with
the first-quadrant spectrum



Let us derive the four terms of the hypercomplex analytic signal given by (29). Inserting

into (29) the quaternionic spectrum Ug given by (13) we get
¥, 06.%) = [[ e*1(f,, f,)U, (f,, f,) e df,df,
RZ
= [ e*“1(f, ) (U —eU,, —&U,, +&U,, e df,df, (C1)
RZ

:H (cosa, +esinay )1( f,, f,)(U, —eU,, —eU, +elU, )(cosa, +e,sina, )df df,
RZ

where 1(f,, f,)=(1+sgn f,)(1+sgn f,). The real part of (C1) is

(%) =Re{ ¥, (%)} =

= H (U, cose cosa, +U,, cosa, sine +U,, sina, cosay +U,, sine, sina, ) df,df,  (C2)
RZ

=uee(X2’X1)+ueo(XZ’Xl)+uoe(X2’X1)+uoo(XZ'X:L)'

The partial Hilbert transform vy(x2, X1) is given by the formula:

V1(X21 X1)
= H sgn f, (U,, cosa, sina, —U,, cosar, cosa, +U,, sina, siney, —U, sin a, cos o, ) df ,df,
RZ

)

(e0)
oV

(ce) 00)
1, +V,

(
o Vi (C3)

Similarly, we get the formula defining the partial Hilbert transform va(xz, x1) in the

hypercomplex case:

v, (%0 %)
= H sgn f, (U, sine, cose, +U, sina, sine, —U,, cosa, cosa, —U , oS ez, sin o ) df ,df,
RZ

:ng:) +v§::) _yloe) o)

259 290
(C4)
The total Hilbert transform v(x,, x1) is given by
v(xz,xl):_” sgn( f,)sgn( f,)-
]RZ
(U, sing, sing, —U,, cosa, sine, —U,, cos a, sin o, +U , €S a, €os e, ) df ,dif,
=iy v v v,
(B4)
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