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Introduction 

The 2-D complex analytic signals with single-quadrant spectra have been defined in [1] 

and later presented in [2]. Later, a similar hypercomplex quaternionic analytic signal has been 

defined [3]. Both approaches use so called Hilbert quadruples. The author of [1] defined three 

Hilbert transforms of 2-D functions: two partial transforms of a real function u(x2, x1) denoted 

    1 2 1 1 2 1, H ,v x x u x x  and     2 2 1 2 2 1, H ,v x x u x x  and a total transform 

    2 1 2 1, H ,v x x u x x . This paper shows that complex and hypercomplex approaches are 

equivalent and in complex/hypercomplex signals the same Hilbert transforms are used. We 

consider 2-D analytic signals with a real part given by 

         2 1 2 1 2 1 2 1 2 1, , , , ,ee eo oe oou x x u x x u x x u x x u x x    , (1) 

i.e., a union of even-even (ee), even-odd (eo), odd-even (oe) and odd-odd (oo) parts [2] as 

follows 
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Notice that in (1)-(5) we used the order of subscripts (x2, x1) (instead of (x1, x2)). It is due 

to the notation introduced in [1], [2], where e is a binary number 0 and o is a binary 1. It 

means that  2 1,eou x x  is an even function w.r.t. x2 and an odd function w.r.t. x1. The signs of 

terms in nominators of (2)-(5) are equal to products of odd-indexed variables. 

 

A. 2-D Fourier transform of a 2-D real signal 

 

The 2-D Fourier transform (2-D FT) of (1) has the form (we use the imaginary unit e1 in 

the exponent): 

    1 1 1 2

2

2 1 2 1 2 1, ,
e e

U f f u x x e e dx dx
  

   (6) 



where 1 1 12 f x   and 2 2 22 f x  . The insertion of (1) into (6) yields the spectrum in the 

form of a complex sum of four terms: 

   2 1 1, ee oo eo oeU f f U U e U U     (7)
 

where 
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2 1 2 1 2 1 2 1, , cos cosee eeU f f u x x dx dx   , (8) 
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2 1 2 1 2 1 2 1, , cos sineo eoU f f u x x dx dx   , (9) 
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2 1 2 1 2 1 2 1, , sin cosoe oeU f f u x x dx dx   , (10) 

   
2

2 1 2 1 2 1 2 1, , sin sinoo ooU f f u x x dx dx   . (11) 

 

B. The Quaternionic Fourier transform of a 2-D real signal 

 

There are various definitions of the quaternionic Fourier transform (QFT). Some authors 

[3], [4] use the two-sided form of the QFT introduced by Ell [5]: 

     1 1 2 2

2

2 1 2 1 2 1 2 1, , ,
e e

qQFT f f U f f e u x x e dx dx
  

    (12) 

where e1 and e2 are imaginary units of the algebra of quaternions  with a basis {e1, e2, e3} 

(the basic properties of quaternions are presented in Appendix A). The insertion of (1) into 

(12) yields 

 2 1 1 2 3,q ee eo oe ooU f f U eU e U e U     (13) 

where all terms are given by (8)-(11) and according to the quaternionic algebra multiplication 

rules: 3 1 2e e e  (see Appendix A). There exists a formula relating the two-sided QFT and the 

standard FT of a real signal u(x2, x1) derived by Pei et al. [6] and given by 

     3 3
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q

e e
U f f U f f U f f

 
   . (14) 

The complex analytic signal with a single-quadrant spectrum 

In this section, we briefly recall the basic elements of the theory of 2-D analytic signals 

with a single-quadrant spectra. We are focused on the complex analytic signal  1 2 1,x x  



with a spectrum in the first quadrant of the frequency space [1], [2] which is defined by the 

inverse Fourier transform 
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e e

x x f f U f f e e df df
 

    . (15) 

In the signal domain (x2, x1), the definition (15) corresponds to the convolution 
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. (16) 

We get 

         1 2 1 2 1 2 1 1 1 2 1 2 2 1, , , , ,x x u x x v x x e v x x v x x        (17) 

where 

       1 1 2
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v x x e f U f f e df df
 

   , (18) 

       1 1 2
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v x x e f U f f e df df
 

    (19) 

are called partial Hilbert transforms w.r.t. a single variable x1 or x2 respectively, and 

     1 1 2

2

2 1 1 2 2 1 2 1, sgn sgn ,
e

v x x f f U f f e df df
 

   (20) 

is a total Hilbert transform w.r.t. (x2, x1).  

A. Hilbert transforms in the complex case  

 Now, let us derive total and partial Hilbert transforms in the form of a sum of their 

even-even, even-odd, odd-even and odd-odd parts. We insert the Fourier transform U(f2, f1) 

given by (7) into (18)-(20) and yield the following forms of the Hilbert transforms (the full 

derivation is presented in Appendix B): 
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Let us note that in (21)-(23) upper subscripts indicate the even/odd parity of the 

corresponding term of U(f2, f1) given by (7) and the lower subscripts – the even/odd parity of 

the corresponding Hilbert transform. 

The hypercomplex analytic signal with a single-quadrant spectrum 

Again, let us recall the elements of the theory of the hypercomplex analytic signal with a 

single-quadrant spectrum defined in [3] using the inverse Quaternionic Fourier Transform 

(QFT) of a single-quadrant quaternionic spectrum, i.e.: 

          1

1 2 1 2 2 1, QFT 1 sgn 1 sgn ,q qx x f f U f f    , (24) 

i.e., using the same single-quadrant operator as in (15). Using the definition of Ell [4] of 

the inverse QFT we have 

      1 1 2 2

2

2 1 1 2 2 1 2 1, 1 sgn 1 sgn ,
e e

q qx x e f f U f f e df df
 

    . (25) 

Let us remark that there exists an alternative definition of the inverse QFT (called Right-

side QFT) introduced by Ell [4] and also used by Hitzer [5]. It differs from (25) by the order 

of terms under the integral. In this case we have 
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2 1 1 2 2 1 2 1, 1 sgn 1 sgn ,
e e

q qx x f f U f f e e df df
 

    . (26) 

Let us note the reversed order of indexes in exponents in (26). In our investigations we 

use the definition (25) which corresponds in the signal domain to the convolution of the 2-D 

real signal u(x1, x2) with the 2-D hypercomplex delta distribution [6]: 

       2 1 2 1 1 1 2 2

1 2

1 1
, ,q x x u x x x e x e

x x
 

 

  
      

  
. (27) 

We have  
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and finally 

         2 1 2 1 1 1 2 1 2 2 2 1 3 2 1, , , , ,q x x u x x e v x x e v x x e v x x     . (29) 



A. Hilbert transforms in the hypercomplex case 

Our goal is to derive the total and partial Hilbert transforms (similarly to (21)-(23)) being 

the terms of the quaternionic signal (29). We insert the quaternionic spectrum Uq(f2, f1) given 

by (13) into (25) (the full derivation is given in Appendix C) and get the four terms of (29) 

         
1 2 1 1 1 1 1, ,

ee eo oe oo

eo ee oo oe
v x x v v v v      (30) 

         
2 2 1 2 2 2 2, ,
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oe oo ee eo
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2 1, .
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We observe that (30)-(31) have the same form as (21)-(23).  

Appendix A 

Algebra of quaternions 

 

The quaternions form a non-commutative algebra of order 4 over ,denoted 

with . Its elements q are ordered pairs of complex numbers: 

      0 1 0 1 2 3 0 1 0 1 2 3, , , , ;  , ,  , , ,q z z r r r r z z r r r r    : 

   0 1 0 1 2 3q z z j r r i r r i j           (A1) 

Applying the Hamilton’s multiplication rules [ ] of imaginary units in  (see Fig. A1), we 

obtain 

0 1 0 1 2 3q z z j r r i r j r k          . (A2) 

 

 

a) b) 

Fig. A1 Multiplication of imaginary units in : a) using the Hamilton’s multiplication rule, b) using the table of 

multiplication 

In Fig. A1 a, three successive imaginary units determine one rule of multiplication. The 

first two units are respectively a multiplicand and a multiplier and the third one - the product. 

  1 e1 e2 e3 

1 1 e1 e2 e3 

e1 e1 -1 e3 -e2 

e2 e2 -e3 -1 e1 

e3 e3 e2 -e1 -1 

i 

j k 

Table A1 



If we move clockwise, we have for example, i j k   and k i j  . If we multiply the units 

counterclockwise, the product gets the minus sign. It means that the multiplication in  is not 

commutative and we have j i j i k       and i k k i j      .  

Some authors apply another notation of imaginary units (, i.e., they replace i, j, k with e1, 

e2, e3 (see Table A1). In algebras of higher orders such a notation is more convenient due to 

the large number of imaginary units. So, the general form of a quaternion (A2) is 

0 1 1 2 2 3 3q r r e r e r e       . (A3) 

The conjugate of ( ) is 

0 1 1 2 2 3 3q r r e r e r e         (A4) 

and its norm is 

2 2 2 2

0 1 2 3q r r r r    . (A5) 

The quaternions (A3) with r0 = 0 are refered as pure quaternions and those with 1q   as unit 

(unitary) quaternions. 

Appendix B 

Derivation of Hilbert transforms of a 2-D complex signal with 

the first-quadrant spectrum 

In this part, we derive the Hilbert transforms (partial and total) starting with the 

decomposition of the spectrum of the real signal u(x2, x1) into its even-even, even-odd, odd-

even and odd-odd parts. It is known [1], [2] that the partial Hilbert transform v1(x2, x1) is 

given by (18). Introducing the Fourier spectrum of a real signal u (x2, x1) given by (7) into 

(18), we have 
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We apply the following notation: upper subscripts indicate the even/odd parity of the 

corresponding term of U(f2, f1) given by (7) and the lower subscripts – the even/odd parity of 

the corresponding Hilbert transform. We obtain after reordering the terms 

         
1 2 1 1 1 1 1,

ee eo oe oo

eo ee oo oe
v x x v v v v     . (B2) 

Analogously, the partial Hilbert transform v2(x2, x1) [1], [2] is given by (19). Repeating the 

same procedure as above, we get 
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and finally 
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Analogously, the total Hilbert transform (20) is given by 
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We obtain 

         
2 1,

ee oo eo oe

oo ee oe eov x x v v v v     (B9) 

Appendix C 

Derivation of Hilbert transforms of a 2-D hypercomplex signal with 

the first-quadrant spectrum 

 



Let us derive the four terms of the hypercomplex analytic signal given by (29). Inserting 

into (29) the quaternionic spectrum Uq given by (13) we get 
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where     2 1 1 2, 1 sgn 1 sgnf f f f  1 . The real part of (C1) is 
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The partial Hilbert transform v1(x2, x1) is given by the formula: 
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Similarly, we get the formula defining the partial Hilbert transform v2(x2, x1) in the 

hypercomplex case: 
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The total Hilbert transform v(x2, x1) is given by 
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