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 

Abstract— The paper is devoted to the polar representation of n-D complex and hypercomplex analytic 

signals with emphasis on the 3-dimensional (3-D) case. Their definition is based on the proposed general 

form of the Cauchy integral. The definitions of complex/hypercomplex signals are presented in signal- and 

frequency domains. The new notion of lower rank signals is introduced. It is shown that starting with the 

3-D analytic hypercomplex signals and decreasing their rank by extending the support in the frequency-

space to a so called space quadrant, we get a signal having the quaternionic structure. The advantage of 

this procedure is demonstrated in the context of the polar representation of 3-D hypercomplex signals. 

Some new reconstruction formulas are presented. Their validation has been confirmed using two 3-D test 

signals: a Gaussian signal and a spherical signal.  
 

Keywords—complex/hypercomplex analytic signal, hypercomplex Fourier transform, hypercomplex 

delta distribution, polar representation 

Introduction 

The theory of hypercomplex signals is a subject of many publications involving either 

mathematicians or engineers working in different fields [1]-[4]. It is based on the theory of 

hypercomplex numbers belonging to different algebras, e.g., to the Cayley-Dickson [5] or 

Clifford algebras [6]. Different definitions of complex/hypercomplex signals have appeared 

recently. The most interesting approach is the Clifford hypercomplex signal defined by Bülow 

and Sommer in [7]. For n = 2, it is identical to the quaternionic analytic signal  A very 

detailed comparison of different definitions has been presented in [9]. Especially the case of 

2-D analytic signals has been studied in detail and formulas relating analytic, quaternionic and 

monogenic signals have been derived. 

This paper is devoted to the study and comparison of properties of n-D 

complex/hypercomplex signals with emphasis on the 3-D case. Especially, it will be shown 

that there are closed formulae enabling calculation of hypercomplex amplitude and phase 

functions in terms of the corresponding polar representation of complex functions. As well, it 

is noticed that the total number of amplitudes and phases of n-D complex and hypercomplex 

signals is equal to 2
n
. 

The Complex and Hypercomplex Multidimensional Analytic Functions Defined by the 

Cauchy Integral 

Consider the n-D hypercomplex space n
 of hypercomplex variables: 

 1 2, , , :n k k k kz z z z x e y  z  where ek are imaginary units (in the domain of complex numbers 

they are usually denoted as k k kz x jy  ). The space n
 is a Cartesian product of complex 

planes ,  1,2, ,k k n , that is, 1 2

n

n    . We define a complex-valued n-D function 

 f z , analytic (holomorphic) in the interior of a region 1 2

n

nD D D D   , n nD  , k kD  . 
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Fig. 1 The closed contour D of integration in the complex plane (n = 1) 

 

In [10], it has been shown that n-D analytic signals with single-orthant spectra are boundary 

distributions of n-D analytic functions. represented by the n-D Cauchy integral. In this paper, 

we propose the unified representation of complex and hypercomplex analytic signals 

introducing the generalized form of the Cauchy integral: 

 
    

 

   
1

1

1 2 1 1

, ,1
,

2 2 2
n

n n

n n nD D

f d
f z

e e e z z

 

    
 


  


 (1) 

where kD  are closed contours in Dk  (see Fig. 1 for n=1). For n = 1, inserting e1 = j, z1 = z and 

1D D    we obtain the well known Cauchy integral  

 
 1

2
D

f d
f z

j z

 

 



 . (2) 

In the complex case [9], all imaginary units in (1) are equal and usually denoted with j and 

any order of integration can be applied. In the general case, if {ek} form the basis of a non-

commutative algebra, the order of integration should be defined. It can be shown by induction 

that if (1) is valid for n-1, it is also valid for n variables [11]. Therefore, starting from (2) we 

can confirm the validity of (1). 

The Complex and Hypercomplex Signals as Boundary Distributions of Analytic 

Functions 

 

It has been shown in [10] that the successive integration of the classical Cauchy integral 

yields the following equivalent two forms of the n-D analytic signal: 

        c

1

1

2

n

k k k kn
k

u x j u x


  I Hx , (3) 

     c

1

1 1
= ,

2

n

kn
k k

u x j
x

 


 
  

 
x x  (4) 

where Ik is the 1-D identity operator w.r.t. xk:  

tIm z

C

zo=xo+j



Re z
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        k k k k ku x u x x u x  I  (5) 

and Hk is the 1-D Hilbert transformation operator w.r.t. xk: 

      
1

k k k k

k

u x u x v x
x

  H . (6) 

Let us note that using the factor 1 2n  in (3) and (4) is a matter of convention. It is used in 

order to normalize the energy of a signal. In the following, we will omit it.  

According to [10], the 1-D analytic signal      c x u x jv x    is a boundary distribution of 

the 1-D analytic function along the 0
+
 side of the real axis of the z x jy   plane and has the 

form 

         c

1
x u j u u x x j

x
 



 
     

 
I H . (7) 

For n = 2, we have 

          c 1 2,x x u u j u u   1 2I - H H H , (8) 

which can be written as a product: 

           c 1 2,x x u j u u j u   1 1 2 2I H I H . (9) 

The straightforward generalization of (3) for n-D hypercomplex signals as boundary 

distrbutions of (1) is 

        c

1

n

k k k k k

k

u x e u x


  I Hx . (10) 

We also have  

     c u   x x x  (11) 

where  

   
1

n

k k k

k

x e x  


    x  (12) 

is called the n-D hypercomplex delta distribution [12, 13]. 

The Fourier Spectral Representation of Multidimensional Analytic Signals 

A. Complex and Hypercomplex Fourier Transforms 

The most common method of analysis of the frequency content of a n-D real signal u(x) is 

the classical n-D Fourier transform defined as 

     
1

exp 2
n

n
n

i i

i

U u j f x d


 f x x . (13) 
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Its generalization for the Clifford algebras has been proposed in [7], [14] and [15] and 

called the n-D Clifford Fourier transform given by 

     
1

exp 2
n

n
n

Cl i i i

i

U u e f x d


 f x x  (14) 

where e1, e2, ..., en are elements of the Clifford algebra basis: 

 
1 2 1 2:1 ,0

ki i i ke e e i i i n k n       . The Clifford algebra is n
th

-order associative and 

non-commutative algebra over  with 2 1ie   or 2 1ie    and i j j ie e e e   for i j . Usually it 

is denoted with  ,p qCl  where p is a number of basis elements such as 2 1ie   and q - the 

number of elements of the basis such that 2 1ie   . It can be easily shown that  0,2Cl  is 

equivalent to the algebra of quaternions  (the 4
th

 order Cayley-Dickson algebra) [5]. In 

consequence, the definitions (13) and (14) are equivalent for n=1 and 2. If n = 2, (14) is called 

the (Left) Quaternionic Fourier transform.  

In [13], the new definition of another hypercomplex Fourier transform inspired by the 

Cayley-Dickson algebra multiplication rules has been introduced. It has the form 

     
1

exp 2
n

n
n

CD k i i

i

U u e f x d


 f x x  (15) 

with 
12ik  . We see that (15) differs from (14) by the order of imaginary units ei in 

exponents. For n = 3, (15) gets the form 

    4 3 31 1 1 2 2 2

3

22 2 3e f xe f x e f x

CDU u e e e d
   

 f x x . (16) 

B. Frequency-domain Definitions of Complex and Hypercomplex Analytic Signals 

Our research is concentrated on signals with a single orthant spectra in the n-D frequency 

space. An orthant is a half-axis in 1-D, a single quadrant in 2-D, an octant in 3-D, etc. Let us 

recall the definition of the n-D unit step operator  1 f : 

    
1

0.5 0.5sgn
n

i

i

f


 1 f . (17) 

 The (complex) analytic signal  c x  has been defined in [16] as the inverse Fourier 

transform of a single-orthant spectrum: 

      -1

c ,U  1x f f  (18) 
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where  U f  is given by (13). Analogously, the n-D Clifford analytic signal  Cl x  with a 

single-orthant spectrum [7] has the form 

      -1 ,Cl Cl ClU  1x f f  (19) 

where 
1

Cl


 is the inverse Clifford Fourier transform [7], [14], [15]. It has been shown in [13] 

that in 3-D, the signal (19) has a split-biquaternionic structure. Also in [13], we introduced the 

frequency-domain definition of a new n-D hypercomplex signal with a single-orthant 

spectrum as follows: 

      -1

h CD CDU  1x f f . (20) 

The 3-D hypercomplex signal  h 1 2 3, ,x x x  defined in (20) has the form of an octonionic 

signal. Let us note that, either (19) or (20), are 8-D hypercomplex representations of a 3-D 

real signal. However, only the expression (20) represents a signal with a well defined norm 

(the standard Euclidean norm) equal to the norm of the Hahn's analytic signal [16]. The norm 

of the Clifford analytic signal is a semi-norm given by the formula 

2 2 2 3 2 2 2 2

1 2 3 12 13 23u v v v v v v v       . Due to the minus sign of the last term the square root of 

this norm (defining the amplitude of the 3-D hypercomplex signal) is a complex function. 

Therefore, the amplitude of the 3-D hypercomplex signal is undefined. 

 

The Notion of Ranking of 3-D Analytic Signals 

To get a better understanding of the polar representation of 3-D (or even higher 

dimensional) analytic signals we introduce the notion of ranking. We assign the highest rank 

equal n to signals with single-orthant spectra. The lower rank equal (n-1) is assigned to a 

union of two signals of rank n. The support of the spectrum is doubled. The rank equal 1 is 

assigned to signals with half-space spectrum, a union of n/2 orthants.  

In this paper, we consider the signals with the spectrum support limited to the half-space 

f1 > 0. For example, 3-D analytic signals are defined by the inverse Fourier transform of the 

complex or hypercomplex single-octant spectra [16], [17]. The half-space is a union of four 

separate octants. Therefore, it is possible to define four different complex signals with single-

octant spectra: 

   1

c 12 13 23 1 2 3u v v v j v v v v         , (21) 

 (3)

c 12 13 23 1 2 3u v v v j v v v v         , (22) 
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 (5)

c 12 13 23 1 2 3u v v v j v v v v         , (23) 

 (7)

c 12 13 23 1 2 3u v v v j v v v v          (24) 

with spectral support in octants No. 1, 3, 5 and 7 (superscript indicates the octant’s label). We 

assign to signals (21)-(24) the highest rank 3. The signal of a lower rank 2 is obtained as the 

sum of two signals of rank 3 with spectra limited to two adjacent octants forming the so called 

space quadrant. Adding (21) and (23) we get  

 
   

 
1 5

1,5 c c
c 12 1 2

2
u v j v v

 



     . (25) 

Similarly, for (22) and (24) we have 

 
   

 
3 7

3,7 c c
c 12 1 2

2
u v j v v

 



     . (26) 

The addition of (25) and (26) gives the signal of rank 1 with the spectrum in the half-space: 

(1) (3) (5) (7)
(1,3,5,7) c c c c
c 1

4
u jv

   


  
   . (27) 

In the same way, basing on (20), we define four hypercomplex analytic signals of rank 3 

with spectra in octants No. 1, 3, 5 and 7: 

 

 

1

h 1 1 2 2 3 12 4 3 5 13 6 23 7

1 1 2 2 3 12 3 1 13 2 23 3 4      = ,

u e v e v e v e v e v e v e v

u e v e v e v v e v e v e v e

         

        

(28) 

 3

h 1 1 2 2 3 12 4 3 5 13 6 23 7 ,u e v e v e v e v e v e v e v          (29) 

 

 

5

h 1 1 2 2 3 12 4 3 5 13 6 23 7

1 1 2 2 3 12 3 1 13 2 23 3 4       ,

u e v e v e v e v e v e v e v

u e v e v e v v e v e v e v e

         

       
 (30) 

 7

h 1 1 2 2 3 12 4 3 5 13 6 23 7u e v e v e v e v e v e v e v         . (31) 

In the second line of (28) and (30) we presented the octonionic signal as a complex sum of 

two quaternionic signals. The same applies for (29) and (31). 

The hypercomplex signals of rank 2 are defined similarly as in (25) and (26): 

 
   1 5

1,5 h h
h 1 1 2 2 3 12

2
u e v e v e v

 



     , (32) 

 
   3 7

3,7 h h
h 1 1 2 2 3 12

2
u e v e v e v

 



      (33) 

where u, v1, v2 and v12 are 3-D real functions. Note that (32) has the form of the first 

quaternion in (28) and the same applies for (33). The hypercomplex signal of rank 1 with the 

spectrum in the half-space is defined as the sum of signals (32) and (33): 
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(1) (3) (5) (7)
(1,3,5,7) h h h h
h 1 1

4
u e v

   


  
   . (34) 

We observe that the 3-D rank 1 complex and hypercomplex analytic signals have the same 

form (compare with (27)). 

The Polar Representation of 3-D Hypercomplex Analytic Signals 

In order to define the polar form in complex/hypercomplex case, it is necessary to specify 

how many amplitudes and phase functions are necessary to define uniquely a signal in 3-D. 

Let us start with the Lemma 1: 

 

Lemma 1: The total number of amplitude and phase functions of n-D complex/hypercomplex 

analytic signals equals 2nM  . 

 In Table 1, the number of amplitudes and phases of complex and hypercomplex analytic 

signals for n = 1, 2, 3 and 4 is given.  

 

Table 1. The number of amplitudes and phase of n-D complex/hypercomplex analytic signals, 

n = 1, 2, 3, 4 

 

n type Number of: 

amplitudes phases Total 

M 

1 complex 
1 1 2 

hypercomplex 

2 complex 2 2 
4 

hypercomplex 1 3 

3 complex 4 4 
8 

hypercomplex 1 7 

4 complex 8 8 
16 

hypercomplex 1 15 

 

In case of separable signals (products of 1-D signals), for n=2: we have 3 1 2M     (one 

amplitude and 2 phases) and for n =3: 4 1 3M     (one amplitude and three phases).  
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A. The polar form of 3-D complex analytic signals 

 

 The 3-D complex signals (21)-(24) with a single-octant spectra can be written in their 

polar forms [16] as follows: 

(1)
c(1) (1)

c c

j
A e

  , (35) 

(3)
c(3) (3)

c c

j
A e

  , (36) 

(5)
c(5) (5)

c c

j
A e

  , (37) 

(7)
c(7) (7)

c c

j
A e

   (38) 

where 
 
c

i
A  and 

 
c

i
  are respectively the amplitude- and phase functions. The superscript (i) 

denotes the label of the octant, i = 1, 3, 5, 7. Let us recall that, for separable 3-D signals, all 

the four amplitudes 
( )

c

iA  are the same and equal to 

2 2 2 2 2 2 2 2

0 1 2 12 3 13 23A u v v v v v v v         (39) 

and the four phase functions 
( )

c

i  are linear combinations of  

1-D phase functions   , 1,2,3i ix i  : 

       (1)

c 1 2 3 1 1 2 2 3 3, ,x x x x x x      , (40) 

       (3)

c 1 2 3 1 1 2 2 3 3, ,x x x x x x      , (41) 

       (5)

c 1 2 3 1 1 2 2 3 3, ,x x x x x x      , (42) 

       (7)

c 1 2 3 1 1 2 2 3 3, ,x x x x x x      . (43) 

Let us introduce the polar forms of the 3-D rank 2 complex analytic signals defined in (25) 

and (26): 

  (1,5)
c1,5 (1,5)

c c

j
A e

  , (44) 

  (3,7)
c3,7 (3,7)

c c

j
A e

  . (45) 

For 3-D rank 2 hypercomplex signals having the quaternionic structure as shown in (32) 

and (33) we can write (compare with (A3), Appendix A) 

(1,5) (1,5) (1,5)
1 3 231 2(1,5) (1,5)

h h

e e e
A e e e

  
  , (46) 

(3,7) (3,7) (3,7)
1 3 231 2(3,7) (3,7)

h h

e e e
A e e e

  


 
  (47) 
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where  

(1,5) (3,7) 2 2 2 2

h h 1 2 12A A u v v v      (48) 

and  

 
 1 2 12(1,5)

1 2 2 2 2

1 2 12

2
tg 2

uv v v

u v v v





  
, (49) 

 
 2 1 12(1,5)

2 2 2 2 2

1 2 12

2
tg 2

uv v v

u v v v





  
, (50) 

 
   

   

2 2
(1,5) (3,7)

c c(1,5)

3 2 2
(1,5) (3,7)

c c

sin 2
A A

A A






. (51) 

Similarly to (A5) and (A6) (Appendix A), we can write the relations between the phase 

functions of the 3-D rank 2 complex and hypercomplex signals. We have 

 (1,5) (1,5) (3,7)

1 c c0.5     (52) 

and 

 (1,5) (1,5) (3,7)

1 c c0.5    . (53) 

We see that the amplitude and three phase functions of the 3-D rank 2 hypercomplex signal 

are expressed as functions of two amplitudes and two phase functions of the rank 2 complex 

(analytic) signal. 

 

B. The polar form of 3-D hypercomplex analytic signals 

 

Let us recall that the polar form of the quaternionic analytic signal is derived using the 

Euler angles (or Rodrigues matrix). We have
 

not found any paper describing a similar 

derivation for 3-D hypercomplex signals. There are suggestions, that the theory of Lie groups 

should be applied or eventually a so called SO4 group. At present we failed to find a solution. 

Let us say that we consulted the problem with some experts. Nobody was able to give a 

suggestion about possible solution. In order to find it using a method of deduction we 

proposed the following polar form of the octonionic signal: 

 

             

h 1 2 3

0 1 1 3 3 2 2 7 7 4 4 6 6 5 5

, ,

        exp exp exp exp exp exp exp

x x x

A e e e e e e e



      


 (54) 

where the amplitude A0 is given by (39) and seven phase functions , 1, ,7i i   have been 

defined in analogy to the polar representation of the 2-D quaternionic signal (A3) (Appendix 
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A). They form two groups: the first one:  1 2 4 5, , ,     is defined by the four phase functions 

( )

c

i  of the complex analytic signal (see Eqs. (35)-(38): 

 (1) (3) (5) (7)

1 c c c c

1

4
        , (55) 

 (1) (3) (5) (7)

2 c c c c

1

4
        , (56) 

 (1) (3) (5) (7)

4 c c c c

1

4
        , (57) 

 (1) (3) (5) (7)

5 c c c c

1

4
        . (58) 

The second group:  3 6 7, ,    is defined by the corresponding four amplitude functions:  

 
   

   

2 2
(1) (3)

c c

3 2 2
(1) (3)

c c

sin 4
A A

A A






, (59) 

 
   

   

2 2
(5) (7)

c c

6 2 2
(5) (7)

c c

sin 4
A A

A A






, (60) 

 
       

       

2 2 2 2
(1) (3) (5) (7)

c c c c

7 2 2 2 2
(1) (3) (5) (7)

c c c c

sin 4
A A A A

A A A A


  


  
. (61) 

The forms (59)-(61) have been deduced from the 2-D case (see Appendix A, Eq. (A5)).  

 

C. The verification of the Eqs.(54) to (61). 

 

A real signal u(x) can be reconstructed from its polar representation of the corresponding 

analytic signals using reconstruction formulae. For 1-D signals, we have uc(x)=Acos(). For 

2-D complex signals we have 

 

         1 1 3 3

c c

c 1 2

cos cos
,

2

A A
u x x

 


 (62) 

and for the 2-D hypercomplex (quaternionic) signals we have 

               
0h 1 2 1 2 3 1 2 3, cos cos cos sin sin sinu x x A           (63)

 

The same form applies for the 3-D rank-2 hypercomplex signals {all functions are 3-D): 

  
             h 1 2 3 0 1 2 3 1 2 3, , cos cos cos sin sin sinu x x x A           (64) 
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The 3-D complex signal is reconstructed using 

   
               1 1 3 3 5 5 7 7

c c c c c c c c
c 1 2 3

cos cos cos cos
, ,

4

A A A A
u x x x

     
  (65) 

Let us note that reconstructed complex signals will be denoted with the subscript “c”, while 

the reconstructed hypercomplex signals with “h”.  

Let us continue the discussion formulating next two lemmas: 

Lemma 2: A n-D nonseparable real signal can be reconstructed from a polar form of 12nM   

different complex signals with single-orthant spectra (total support in the half-space). 

 

Lemma 3: A n-D nonseparable real signal can be reconstructed from a polar form of 

22 2nM   different hypercomplex signals with single-orthant spectra (total support in the 

quarter-space). 

 

The Lemma 2 needs no evidence. Eqs. (62) and (64) satisfy it and the extension for n > 3 is 

straightforward. Differently, we only know that the Lemma 3 is satisfied for n = 2 

(quaternionic signals). Moreover, it states that the 3-D real signal cannot be reconstructed 

using the single amplitude and the seven phase functions of the signal (54) of single-octant 

spectral support (1/8 of the total space). However, the requirement of the ¼ spectral  support 

is satisfied by the rank 2 hypercomplex signal defined by (32). Its polar form is similar as 

defined in [7] for 2-D quaternionic signals: 

 

(1,5)(1,5) (1,5)
31 231 2(1,5) (1,5)

h 0

ee e
A e e e

 
   (66) 

where the amplitude  

  (1,5) 2 2 2 2

0 1 2 12A u v v v     (67) 

and three phase angles 
(1,5) ,  1,2,3i i   can be calculated using two amplitudes and two phase 

functions of the 3-D rank 2 complex signals (see (51)-(53)).  

Verification of the Reconstruction Formulae using Numerical Calculations 

Due to the lack of theoretical derivation of the polar form (54), we applied numerical 

calculations using a Gaussian 3-D real test signal (see Appendix 2). Using the four amplitudes 

and four phase functions defined by (35) to (38) (Cartesian form is defined by (21) to 24)) we 

calculated the amplitude using (39) and the seven phase functions given by (55)-(61).  
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 The reconstructed signal is calculated using the formula 

 h 1 2 3 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

, , [

                            

         

u x x x A c c c c c c c s s s c c c c s c c s s c c c s s s s c c s s c s c s c

s c s s c s c c c s c s s c s s c c s s c c c s s c c s s s c s c c s

    

    

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

                   

                            ]                                             

c s c c s c s s c s c s c s s c c c c s s c s s c c s s c c c s s s s

s s s s s s s

    



(68) 

where  cosi ic   and  sini is  . 

 A. Numerical calculations using 3-D Gaussian test signal 

The original and reconstructed signals are displayed using the Matlab graphical editor. We 

show cross-sections with fixed values of the third variable x3 = 0. The observation of the 

tables of 3-D data confirmed, that such a choice of a cross-sections is representative. We 

applied the following parameters of the Gaussian signal: 1 = 2 = 3 = 0.5 and 12 = 13 = 23 

= 0.7 (nonseparable case) and 12 = 13 = 23 = 0 (separable case). 

The accuracy of the numerical calculation has been verified by comparing the original real 

signal (Fig. 2a) with the reconstructed signal (65). The calculated difference equals zero (Fig. 

2b). The same result has been obtained using the 3-D version of the reconstruction formulae 

(63) applied to the hypercomplex 3-D rank 2 signal (32). Note that this signal satisfies the 

Lemma 3.  

Finally, we calculated the reconstructed signal given by (68), i.e., using the single amplitude 

and seven phase functions of (54). Calculations have shown that the most dominating term is 

A0c1c2c3c4c5c6c7, and a few terms are very small w.r.t. the dominating term and the rest are 

completely insignificant. Fig. 3a shows the reconstructed signal. It differs only slightly from 

the original one of Fig. 2a. Fig. 3b shows the difference between the original and 

reconstructed signals. It is of the order of a few percents w.r.t. the original signal. We detected 

that the addition of other 15 terms to the dominating term increases the difference. Fig. 3c 

shows the difference between the the dominating term and the original signal. Differently to 

Fig. 3b, the difference is symmetric. Therefore, the original signal can be approximately 

reconstructed using the dominating term of (68) We may assume that the above calculations 

confirmed the Lemma 3 in 3-D case. However, only theorethical derivation of the polar form 

(54) can yield a more safe confirmation.  

Let us have a comment about the deduced formulae (55)-(61). For separable signals, all four 

amplitudes of the 3-D complex signals are equal. In consequence the phase functions defined 
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by (59)-(61). i.e., 3 = 6 =7 = 0. The insertion of formulas (40)-(43) into (55)-(58) yields 

1 1  , 2 3 4 2,        and 5 0  . In consequence, the polar form (54) reduces to 

  4 31 1 2 2(1)

h 1 2 3 0, ,
ee e

x x x A e e e
    (69) 

and has exactly the same form as the polar representation of separable complex signals. Both 

forms differ only by the imaginary units. This fact validates strongly the deduced Eqs. (55)-

(58). 

 

Fig. 2a. Cross-section  1 2 3, , 0u x x x   of the real Gaussian 3-D nonseparable signal. Exactly the same picture 

applies for reconstructed signals defined by (63)-(64) . 

 

 

Fig. 2b. The difference between the nonseparable real 3-D Gaussian signal and its reconstructed versions defined 

by (64) (rank 2 hypercomplex) and (65) (complex). In both cases the reconstruction is perfect. 

 

 

Fig. 3a. The signal reconstructed using (68). It differs only slightly from the original signal of Fig. 2a. 
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Fig.3b. The difference between the signal reconstructed using (68) and the original signal of Fig. 2a. 

 

 

Fig. 3c. The difference between the signal reconstructed using the dominating first term of (68) and the original 

signal of Fig. 2a. 

 

B. Example with a 3-D signal in the form of a sphere 

In the above example, the 3-D signal defined by (B1) and the signal calculated numerically 

by the inverse Fourier transform of the spectrum given by (B4) (40 samples for each variable) 

have exactly the same shape. This is a feature of the smooth Gaussian signal. This is not a 

feature of signals with sharp edges, for example, the signal in the form of a sphere (see 

Appendix C). Fig. 4a shows the cross-section (x3 = 0) of a sphere defined by (C1) and Fig. 4b 

the same defined by the inverse Fourier transform of the spectrum given by (C2). Their 

difference is shown in Fig. 4c. The signal reconstructed using (65) has the form shown in 

Fig.4b, i.e., the reconstruction is perfect only w.r.t. the signal defined by the inverse Fourier 

transform of the spectrum.  

 

Fig.4a. The cross-section (x3 = 0) of the sphere given by (C1). 
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Fig.4b. The signal of Fig.4a obtained by the numerical calculation of the inverse Fourier transform of the 

spectrum given by (C2). 

 

 Finally, let us check the reconstruction formulae (68) for the sphere. Fig. 4d shows the 

reconstructed signal and Fig. 4e the difference between Figs 4b and 4d. We see that the 

reconstruction is imperfect (Lemma 3). 

 

Fig.4c. The difference of the cross-sections displayed in Figs 4a and 4b. 

 

 

Fig.4d. The cross-section of the sphere reconstructed using (68) 

 

Fig. 4e. The difference of the cross-sections of Figs 4b and 4d. It confirms the Lemma 3. 
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Conclusions 

(i) The generalized form of the Cauchy integral presented in this paper shows that n-D 

complex and hypercomplex analytic signals are both boundary distributions of the 

corresponding analytic functions. Therefore, complex and hypercomplex analytic signals have 

the same theoretical roots. 

(ii) It has been shown, that the formulae defining the polar representation of 2-D and 3-D 

hypercomplex signals can be derived starting with the corresponding amplitude and phase 

functions of complex signals. We believe, that this procedure applies for n-D signals. 

(iii) It has been recalled that n-D real signals can be reconstructed using the amplitude and 

phase functions of its polar form of M = 2
n-1

 complex signals (Lemma 2) with the total 

spectral support in a half-space. 

(iv) For 2-D and 3-D real signals, we have shown that they can be reconstructed using the 

amplitude and phase functions of M = 2
n-2

 hypercomplex signals (Lemma 3) with the total 

support in a quarter of the space. We believe that lemma 3 is valid for n>3. 

(ivi) The paper presents the notions of a lower rank complex and hypercomplex signals and 

shows that a real 3-D signal can be reconstructed using the polar form of a 3-D rank 2 signal. 

 

The paper has been illustrated with 3-D analytic signals with single-octant spectra and the 

corresponding octonionic 3-D signals with Cayley-Dickson algebra imaginary units. The 

polar representation of the octonionic signals is exactly known only for rank 2 signals having 

the form of the quaternionic valued 3-D signal. The theoretical derivation of the polar 

representation of the rank 3 octonionic signal is, to our knowledge, an unsolved problem. 

However, we presented a hypothesis that the polar form of the octonionic signal defines a 

single amplitude and seven phase functions. Theoretical results have been tested using the 3-

D non-separable Gaussian signal. Next research is needed. 

APPENDIX A.  2-D AND 3-D ANALYTIC SIGNALS 

In 2-D, it is possible to define four analytic signals with spectra in successive quadrants of 

the frequency space. We have two conjugated pairs of signals: 
1 4    and 3 2   . The 

labelling of quadrants of the (f1, f2)-space is the same as in [12]. So, the 2-D real signal is 

represented by two different analytic signals: the first one with a the spectrum limited to the 

1
st
 quadrant (f1>0, f2>0) is 

       (1)
c 1 2,(1) (1)

c 1 2 1 2 c 1 2, ,
j x x

x x u v j v v A x x e


       (A1) 
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and the second one with a spectrum in the 3
rd

 quadrant (f1>0, f2<0): 

       (3)
c 1 2,(3) (3)

c 1 2 1 2 c 1 2, ,
j x x

x x u v j v v A x x e


      . (A2) 

The polar representation defines two different amplitudes (1)A , (3)A  and two different phase 

functions (1) , (3) . Two analytic signals can be equivalently replaced by a single 

quaternionic signal [7], [9] with the spectrum in the 1
st
 quadrant of the frequency space: 

      3 31 1 2 2
1

h 1 2 1 1 2 2 3 0 1 2, ,
ee ex x u v e v e ve A x x e e e
        (A3) 

where 

   
2 2

(1) (3)

c c2 2 2 2 2

0 1 2
2

A A
A u v v v


      (A4) 

and 

 (1) (3)

1 c c0.5    ,  (A5) 

 (1) (3)

2 c c0.5    ,  (A6) 

 
   

   

2 2
(1) (3)

c c

3 2 2
(1) (3)

c c

sin 2
A A

A A






. (A7) 

Concluding, there are close formulae enabling the calculation of the quaternionic polar 

representation using the analytic polar one. Note that in both cases, we deal with four different 

functions, i.e.,
(1)

cA , 
(3)

cA , 
(1)

c , 
(3)

c  (analytic case) correspond to A0, 1, 2, 3 (quaternionic 

case) (see Table 1) 

APPENDIX B. THE 3-D GAUSSIAN SIGNAL 

The 3-D Gaussian signal is defined by 

   
3

1 23 2

1 2 3

, 1

1
, , 2 exp

2
ij i j

i j

u x x x M M x x
M






  
  

  
  (B1) 

where 

 2 2 2 2 2 2

1 2 3 12 23 13 13 12 23 12 23 131M                   (B2) 

and 

 2 2 2

11 23 2 31M     ,  2 2 2

22 13 1 31M     ,  2 2 2

33 12 1 21M     ,  

 2

12 21 1 2 3 23 13 12M M         ,  2

23 32 1 2 3 12 13 23M M         , 

 2

13 31 1 2 3 12 23 13M M         . (B3) 
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The parameters 
2

i , i = 1, 2, 3 are called variances and ij , i = 1, 2, 3, j = 1, 2, 3, i j  are 

crosscorrelation factors. If all 0ij  , we deal with a 3-D separable Gaussian signal. The 

Fourier spectrum  1 2 3, , ,  2i iU f      of the signal (B1) is  

 

   

1 2 3

2 2 2 2 2 21
1 1 2 2 3 3 1 2 12 1 2 1 3 13 1 3 2 3 23 2 32

, ,

exp exp - .

U   

                            

 

 (B4) 

APPENDIX C. THE SPHERE AND ITS 3-D SPECTRUM 

 The sphere is a spherically symmetric function 

  1

1

1 if  

0 if  

r r
u r

r r


 


  (C1) 

Its Fourier transform is [19] 

     1 1 13

4
sin cosU r r r


   


     (C2) 

where   . 
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