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Abstract

An algorithm of wavelet domain data quantization aimed at improving compression
efficiency is presented. Threshold data selection is proposed as more effective uniform
quantization modification than zero-zone increasing. To fit adaptively threshold value to
local image features, the estimation of significance expectation for each wavelet
coefficient was included into thresholding procedure. The remaining data are uniformly
quantized without any changes of bin boundaries. As a result, more effective low-cost
quantization scheme was constructed. It allows significantly increase compression
efficiency of images. Experimental Rate-Distortion curve shows the same distortion for
decreased bit rates even up to 20% in comparison to standard uniform quantization. Such
quantization technique was applied in wavelet coder with optimised schemes of
decomposition and zerotree based coding. Its compression efficiency is competitive with
the most efficient methods across all natural images tested.

1. INTRODUCTION

A quantization procedure is fundamental in lossy compression, also for wavelet-based
techniques. Space-scale data coefficient localisation in wavelet domain reflects
nonstationary nature of images and determines profitable conditions for nontrivial
solutions of quantization problem. Global, stationary models, assumptions of i.i.d
(independent and identically distributed) signals and others modelling tools are often too
coarse to capture the character of image plane features, containing important information
which should be preserved in compression.

Considerations on entropy constrained scalar quantization prove that uniform
quantizers are optimal for high bit rate compression [1]. But established high resolution
quantization hypothesis is not valid in case of low bit rate compression (bit rates less than
1.0 bpp). Quantization bins are too large and probability density of quantized random
source can not be considered as approximately constant. However, Farvardin and
Modestino [2] proved that even though the high resolution assumption may not hold, for
a large class of probability distribution including Generalised Gaussian Distribution
(GGD), the uniform quantizer yields a distortion rate that is close to the optimal quantizer
if the number of quantization bins is large enough. In this case uniform threshold
quantization (UTQ) has been proved to perform very close to the optimal entropy
constrained quantizers for a wide class of memoryless sources. The quantizers, which
have the infinite number of levels and equal step width belong to UTQ class and
modifications of UTQ are used in the most efficient compression algorithms [3][4][5].



The purpose of our research is to increase efficiency of quantization scheme by
improving uniform quantization procedure and exploiting and space-scale data
dependencies. The optimisation of quantization process is realised with respect to
adaptive threshold data selection across scale and space.

2. STATISTICAL MODELLING AND QUANTIZATION OF WAVELET
COEFFICIENTS

Generally, the statistical prior model, even if it captures the variations in data
dependencies and appearance only partially, can be substantially beneficial for image
compression because of fitting proper quantization scheme and consequently encoding
procedure in compression algorithm. But it is very difficult to infer even complex
probability density function modelling data dependencies because of high dimensionality
of digital images. Thus it is essential to simplify the problem by reducing the
dimensionality of compressed data space by linear, often unitary transformation of
original image data. In other words, converting global data inter-dependencies into small
local data dependence could be very useful in statistical description of compressed data.

Marginal data distributions are often used to characterise the statistical properties of
wavelet coefficients. These models are based on the assumption that the data within a
subband are 1.i.d. It was noticed, empirically and theoretically, that the marginal statistics
p(x) of wavelet domain data are highly non-Gaussian. Zero-mean Generalized Laplacian
distribution was found to be a good description of marginal densities [6][7]. LoPresto [3]
proposed zero-mean GGD density function. Each subband is viewed as a zero mean GGD
source with a standard deviation that is slowly varying function of the spatial coefficient
localisation. The flexibility of GGD shape modelling allows for the efficient capture of
the diverse statistics of different wavelet bands for various images and target bit rates
caused by fixed slope A of Rate-Distortion (R-D) characteristics. Each coefficient
variance is estimated by means of Maximum Likelihood Estimate 'on the fly' based on
local context. The assumption that each coefficient of causal context (defined by local
causal windows 3x3 and 5x5) is drawn independently from the GGD is used. Backward
and forward adaptation scheme is used in final estimation of the model of pixel statistics
derived from GGD parameterised source. Novel Mallat and Falzon considerations [1]
suggest rational instead of exponential decay of p(x):
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p(x)ocx (1)
for x large enough and exponential decay well-modelled by GGD when x is small.

The weakness of such models is generally related to the assumption of data
independence in wavelet domain. The coefficients of wavelet decomposition are found to
be fairly well decorrelated but they are not independent. Some data dependence in spatial
subband domain (e.g. in edge localisation) and inter-band parent-children relations is
noticed. The joint histograms presented by Simoncelli [7] show that high-magnitude
parent-children coefficients are dependent. The conditional expectation E(C | P) is
approximately proportional to P: E(C | P) oc P, where parent random variable P and child

random variable C are defined by sets of coefficient magnitudes. Furthermore, the



qualitative character of these statistical relationships for magnitudes of coefficients at
adjacent spatial localisation was found. Thus joint magnitude statistics to model local
spatial and inter-scale data dependence is used in our modification of dead-zone UTQ.

We examine linear prediction for coefficient magnitude estimation (ME):
K
MEF =% a,m,, , where the adjacent (in space - 3x3 causal window and parent node)
k=1
coefficient magnitude set {m,,} is used. The magnitude value m, :|C,-| is conditioned

upon the ME for each significant coefficient c,. The weights ¢, are chosen to minimise a
mean square error of real magnitude values approximation.

The 1% order conditional model P(m, | MEX) is used instead of conditional probability
model of K-order P(m;|m,,,...,m, ) because of context dilution. Such context
quantization can be continued by quantization of ME's. The number of levels was
decreased about 30% to improve statistical model. Therefore the conditional probability
model P(m, |Q(ME[)) can increase conditional probability of alphabet symbols in

comparison to simpler first order model P(m, |m, ). It captures the majority of mutual

information between such linear predictor and coefficient magnitude values.

The optimal entropy constrained scalar quantizer for low bit rates is nearly uniform but
not uniform. Normalised histograms of wavelet coefficients for different subbands and
images show that probability density estimate p(x) has important variations and faster
decay for small x close to zero. Hence non-zero quantization bins have the same size A

but the zero bin must be modified. Its width [-7,7] is larger than [-A/2,A/2]. The
zero bin ratio f7=i is a parameter that must be adjusted to optimise compression
algorithm in R-D sense. Larger zero bin, called dead-zone, reduces these wavelet
coefficients which are essentially related to noise. Both experimental [4] and theoretical
[1] ways of optimal # value estimation were successfully applied. Such dead-zone UTQ
(DUTQ) scheme is considered as the most optimal for wavelet compression applications.
We suggest the modification of such scheme by incorporating adaptive dead-zone
modulation based on joint statistical models of local data dependencies.

LoPresto optimised # by fitting marginal distribution models to data features and
selecting an optimal R-D curve. Mallat and Falzon presented the theoretical zero bin ratio
evaluation, where the following relation can be stated:

Rl .
7706\/%, (2)

R - total number of bits of the encoded quantized significant coefficients, M - number of
significant coefficients. We approximated relation (2) for local optimisation of 7,. The
R, value depends on many factors of encoding algorithm and modelling of all type

dependencies is too complex, but one important note can be stated: R, is proportional to
the conditional entropy of data source characterised by conditional probability model



P(m, |Q(ME")). Because similar probability model is used in arithmetic encoding of
quantized coefficients, lower conditional probability of symbols of source aphabet means
poorer coding efficiency and increased bit rate of final code. Increased value of h; should
reduce unsuitability of conditional model to improve compression effectiveness.

Data significance S; of coefficient C; in relation to threshold T (or t as the width of
zero bin) means that s; =10 ¢;3T and oppositey, insignificance means
s; =0U ¢; <T . We used the status of surrounding data {s;,} in causal context (order L)

of current and higher level to estimate significance expectation for coefficient C; :

Qor

E(s;)=+a s, . (©)
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Locally, we can state that M p E(s;) . Profits of threshold increase are mainly the result of

the removal of encoding inefficiency of significant coefficients surrounded by insignificant
pixels. Information content expressed in coefficient value does not make up for the costs
of such value encoding (small dope of R-D curve). Significance expectation can be
considered as local area activity estimation to improve R-D performance of the coder.
Finally, we state the following expression for adaptive zero bin ratio modification:

| £(s) ’ @

\/- & P(m, |Q(ME®))log, P(m, |Q(MEX))
h; u

where | is an index of symbol of current magnitude source alphabet. Such quantization
procedure is caled adaptive DUTQ (ADUTQ). Let us consider the problem of
significance estimation in greater detail in the next section.

3. THRESHOLD DATA SELECTION IN QUANTIZATION ALGORITHM

The most efficient coders are based on zerotree structures, which describe and exploit the
relationships between the wavelet coefficients across subbands. Simple and useful model
of zerotree structures could be disturbed by hypothetical situation, where only a small
group of significant pixels (even one) as an edge sign appear in the middle of large low
activity area which could be efficiently covered by well fitted zerotree structure. Let us
assume that a single pixel is located at the bottom of great zerotree extended across
severa tree levels. It is possible to happen in first steps of iterative EZW-like algorithm
(e.g. [11]). The profits of very efficient coding of a large set of data by single index of
large zerotree are lost in that case. A few smaller zerotrees and single coefficients are
probably coded instead, with additional code bits. In rate-distortion (R-D) sense to ignore
this single pixel is more efficient than to preserve this pixel and lose coding efficiency.
Entire wavelet coefficient selection is a good tool to eliminate these undesirable single
sgnificant pixelsin large low activity aress.



Thus to determine the circumstances under which significant coefficients should be
ignored is the main problem of compression efficiency improvement. This issue could be
considered more formal in R-D sense but the problem of finding the space-scale balance
parameters for optimal compression efficiency at each case is not solved yet. Iterative or
interactive procedure of space-frequency quantization must be applied to optimise
compression scheme in R-D sense because of a balance between ignoring and preserving
pixels considered as optimal zerotree pruning. Our problem can be stated simply as:

min _ D(A,7) subjectto BR(A,7)=BR,, (%)

{A€Q;7cO}

where D(A,7) is a distortion associated with quantizer choice (A,7), O represents a finite
set of all admissible scalar quantizer choices, T is a full depth decomposition tree and 7 is

pruned subtree. The shape of pruned subtrees is a function of threshold 7" in adaptive data
selection 7(7').

Better significance characteristic is possible in completed UTQ scheme. We modified
typical dead-zone UTQ scheme. Increased dead-zone was replaced with threshold data
selection without any modification of scalar uniform quantization. Thus this algorithm
can be considered as entire coefficient selection with threshold value exceeding A/2 and
quantization of remaining coefficients with constant bin size A (threshold data selection
and uniform quantization - TSUQ). It is explained in figure 1. The benefit of applying
such method is clear: data selection is not repeated in decoder so it could be done without
obeying causality. Full size context can be applied in estimation of threshold value.

Additionally, considerations on proper 7; selection are extended on the conditions of

threshold 7; optimisation for each coefficient. Small level of 7; increase (less than 0.5A)
is assumed. According to (5), it is clear that threshold value for each coefficient is a
function of step size A and currently pruned subtree z,: T, = f (A’Té,T,,--~,T,,. )=f(A7T).
Causal part of this tree is provided by thresholding of previous coefficients with
T,,T,,...,T_,, and noncausal part of tree is defined by A. Moreover, we construct an

estimator of significance expectation similar to (3), but it is based of L-order context
shape specified by decomposition tree T (parent-children relations) as a function g of 7, :

5. =E[s(t,)]=g(s") = isf, . (6)

This estimator reflects the shape of subtree 7, as encoding efficiency indicator in

considered R-D optimisation. Hence, the value of 7; should be redefined as a function of
data significance 7, = f(A,s,). But the question is about function f(-). Our
approximation of optimal f(-) for practical algorithm is as follows. Taking the equation
(4) we can replace conditional entropy expression with significance estimator (6) because
of: a) zerotree -based structure of lossless encoder, b) coding of magnitudes as successive
bit planes, which could be treated as significance maps, c¢) unchanged bin boundaries and
reconstruction levels, and decreased entropy only by significance-to-insignificance
coefficient transients. Because thresholding mostly influences significance map, we can



approach threshold function by stronger dependence on 5,: T, oc A(1-5,)”. Finally, we

concluded the following expression on adaptive threshold modification, verified
experimentally:

Ti;%[1+t(1—§i)2], (7)

where ¢ - constant fitted as forward adaptation of image or successive subbands
characteristics.
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Figure 1. The positive half of the UTQ with step size A (top), DUTQ with zero bin ratio #
(middle) and TSUQ with threshold 7 (bottom). ¢,'s and r,'s are bin boundaries and re-

construction levels, respectively. g, 's and 7, are changed points in modifications of UTQ.



Based on significance estimator and TSUQ scheme, quantization procedure called
adaptive TSUQ (ATSUQ) for each wavelet coefficient ¢, is as follows (all computations
are low-cost):

e (Calculate the shape of current pruned subtree 7, according to step size A and set of
prior threshold values T;,7;,...,T, ;.

e Evaluate the significance expectation based on adjacent pixels in decomposition tree
(other children and parent) according to (6).
e Compute final threshold value 7, defined by formula (7) and select correct coefficient

as significant with relation to 7, or insignificant.

e Perform uniform quantization with step size A in case of coefficient verification as
significant.

4. WAVELET CODER

To implement and test described ATSUQ procedure, we constructed wavelet coder with
some optimization of wavelet decomposition and quantized coefficients coding scheme.
We also tested different version of such coder to consider compatibility with JPEG2000

paradigm.
4.1 Filters and decomposition

We applied efficient filter banks, known from literature. More compact energy
distribution in space-scale domain does not produce separated single points in large
smooth area. Thus data covering zerotree structure system could be made more efficient.
To optimise wavelet image decomposition in R-D sense one must chose a wavelet basis
that gives precise approximation of an image with few wavelet coefficients compactly
located in space across different scales (not spread in spatial domain around edges). As a
result, a small approximation error and efficient significance map description by the
zerotrees is maintained. Additionally, we tested different decomposition schemes: dyadic,
standard, uniform, uniform plus dyadic etc. to improve compression efficiency.

4.2 Coding scheme

It is based on zerotree structure built from the top to the bottom of hierarchical wavelet
tree. Some simple statistical modelling for arithmetic coder was applied. Magnitudes,
signs and significance map were coded separately. We built progressive coding schemes
in quality- and in resolution order. The embedded version of coder with ATSUQ and set
partitioning similar to SPIHT was constructed.

4.3 Progressive and embedding realisation

Two problems are the most difficult to solve in embedded coding scheme: iterative
optimisation of threshold data selection for fixed target bit rate and R-D optimised code
generation for all successive lower bit rates until fixed bit rate is finally approached.
Threshold data selection and data quantization is scaled as a function of target bit rate.



Progressive in quality encoding is realised as successive data selection for thresholds
built on the base of entire step size A, next A/2, A/4 etc. Entire step size in concluded as
the extension of Wintz and Kurtenbach [8] considerations:

2 1 &
A:k-{BRd-Fm{anz—ﬁzwn 1n0'3}}, (8)

n=1

where: N - number of subbands, O'j - coefficient variance estimation for subband n, o -
all coefficients' variance estimation, w,- weight of subband » closely related to scale,
BR, - average desired bit rate per sample. Factor £ could be established as constant or
interactively fitted to optimal compression in R-D sense.

Wavelet coder progressive in resolution uses different data ordering. All quantized
data are coded from the top to the bottom of decomposition tree by following
decomposition levels as finer resolution version of compressed image instead of
successive bit planes encoding across a whole image. Output data stream is an embedded
code in resolution sense. The iterative procedure is needed to meet exactly the target bit
rate constraint. Switching between quality and resolution oriented decoding is possible.
Data stream encoded in resolution mode could be decoded in successive bit plan order to
achieve quality growing reconstruction of images.

S. RESULTS AND CONCLUSIONS

The efficiency evaluation of considered data models and quantization scheme applied to
wavelet-based image compression was the subject of the conducted tests. Natural test
images: Lenna, Barbara and Goldhill (512x512 x8bit) and PSNR as quality measure were
used. Figure 2 and table 1 show the effectiveness of quantization scheme modification.
The compression efficiency evaluation of wavelet coder is reported in table 2.

Table 1. Comparison of different wavelet coefficients' quantization procedures in
wavelet-based compression scheme. PSNR values for 0.25 and 0.5 bpp (bits per pixel) are
presented. Filter banks from [9] and 6-levels dyadic decomposition were used.

Quantization Lenna Barbara Goldhill
Procedure 0.25 0.5 0.25 0.5 0.25 0.5
UTQ 34.03 | 37.00 | 27.74 | 31.77 | 30.20 | 32.85
DUTQ 34.32 | 37.35 ] 28.10 | 32.08 | 30.60 | 33.24
TSUQ 34.39 | 37.40 | 28.16 | 32.15 | 30.64 | 33.31
ADUTQ 34.47 | 37.48 | 28.24 | 32.23 | 30.74 | 33.38
ATSUQ 34.55 | 37.57 | 28.40 | 32.37 | 30.78 | 33.46

The benefits of quantization modifications are clear. Experimental R-D curve shows the
same distortion for decreased bit rate up to 20% for presented quantization method in
comparison to UTQ. Moreover, ATSUQ gave up to 0.3 dB of PSNR improvement in
comparison to TSUQ, up to 0.15dB in comparison to ADUTQ, and up to 0.7 dB in
comparison to UTQ. TSUQ was more effective than DUSQ for all images and bit rates.
Mean improvement is 0.06 dB of PSNR.
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applied in wavelet coder. Lenawas coded and M SE, as distortion D measure was used.

Table 2. The evauation of compression efficiency of presented wavelet coder. Optimal
filter banks ([9] - for Lena and Goldhill, [10] - for Barbara) and decomposition scheme
(standard for Lena and Goldhill, 3 levels of uniform plus dyadic for Barbara) were used.

SPIHT[11], SFQ[12], C/B[10], PACCI[4], PC-AUTQ[5] and EQ[3] are the reference.

Technique Lena Barbara Goldhill
0.25 0.5 0.25 0.5 0.25 0.5
SPIHT 3411 | 37.21 | 29.36 | 33.07 | 30.56 | 33.13
SFQ 3435 | 37.41 | 29.67 | 33.51 | 30.71 | 33.37
C/B 3457 | 3752 | 28.75 | 32.64 | 30.80 | 33.53
PACC 3453 | 3751 | 2865 | 3254 | 30.84 | 33.51
PC-AUTQ 34.46 | 37.56 - - 30.78 | 33.46
EQ 3457 | 37.68 - - 30.76 | 33.42
Wavelet coder with ATSUQ | 34.60 | 37.58 | 30.17 | 33.95 | 30.99 | 33.60

Final compression efficiency of wavelet coder with ATSUQ is significantly better than
other coders for Barbara (improvement is up to 0.5 dB), dlightly better for Goldhill (up to
0.15 dB) and comparable for Lena. Two versions of wavelet coder (progressive in
resolution and quality) have comparable compression efficiency results (maximum

difference is 0.05 dB of PSNR).




The removal of 'unusual' information in lossy manner can be optimised by proper
quantization algorithm design in compression scheme. Presented quantization scheme
allows achieving high effectiveness of wavelet compression algorithm.

Scale-space data characteristic after wavelet decomposition is utilised in further data
processing and redundancy removal. Entire threshold data selection followed by UTQ
was proposed instead of UTQ with increased dead-zone. As a result, two advantages were
proved: possibility of noncausal modelling of wavelet coefficients and increased
quantization efficiency. Thus, the improvement of quantization scheme by applying data
dependency models in wavelet domain was notified. Significance estimation on the base
of zerotree structure to combine quantization and coding optimisation is applied.

Adaptive threshold modification in forward and backward manner increased final
efficiency of a whole lossy compression algorithm by low computational costs operations.
In comparison to more complex wavelet coders with great computational cost of
performance, the coder described in this paper is competitive in terms of achieved bit
rates across tested images. This coder outperforms reported results in most cases and can
be realised in different resolution or quality oriented way.
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