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ABSTRACT

Efficient image compression technique especialiynfiedical applications is presented. Dyadic waveestomposition by

use of Antonini and Villasenor bank filters is falled by adaptive space-frequency quantization anatrze-based entropy
coding of wavelet coefficients. Threshold selectiord uniform quantization is made on a base ofapatriance estimate
built on the lowest frequency subband data setedtold value for each coefficient is evaluatedresak function of 9-order

binary context. After quantization zerotree congtimn, pruning and arithmetic coding is applied éfficient lossless data
coding. Presented compression method is less cartipde the most effective EZW-based techniquesalbiatvs to achieve

comparable compression efficiency. Specifically auethod has similar to SPIHT efficiency in MR imag@mpression,

slightly better for CT image and significantly ettn US image compression. Thus the compressfamiesafcy of presented

method is competitive with the best published dtbans in the literature across diverse classesedfical images.

Keywords. wavelet transform, image compression, medicaberearchiving, adaptive quantization

1. INTRODUCTION

Lossy image compression techniques allow signiflgadtiminish the length of original image represaitn at the cost of
certain original data changes. At range of lowérrates these changes are mostly observed astidisttiut sometimes
improved image quality is visible. Compression loé toncrete image with its all important featuressprving and the
noise and all redundancy of original representatismoving is do required. The choice of proper caagion method
depends on many factors, especially on statisfitelge characteristics (global and local) and apftn. Medical

applications seem to be challenged because ofatestdemands on image quality (in the meaningiagmstic accuracy)
preserving. Perfect reconstruction of very smallctres which are often very important for diaga@ven at low bit rates
is possible by increasing adaptability of the aitfpon. Fitting data processing method to changedata behaviour within
an image and taking into account a priori data kadge allow to achieve sufficient compression afficy. Recent
achievements clearly show that nowadays wavelatebshniques can realise these ideas in the lgst w

Wavelet transform features are useful for bettpragentation of the actual nonstationary signatsadiow to use a
priori and a posteriori data knowledge for diagivadly important image elements preserving. Wasgetate very efficient
for image compression as entire transformation sbsinction set. This transformation gives similavdl of data
decorrelation in comparison to very popular disrmsine transform and has additional very imporaatures. It often
provides a more natural basis set than the sinsisafidche Fourier analysis, enables widen set aift®nl to construct
effective adaptive scalar or vector quantizatiortiine-frequency domain and correlated entropy apdacthniques, does
not create blocking artefacts and is well suited Hardware implementation. Wavelet-based compnesisonaturally
multiresolution and scalable in different applioas so that a single decomposition provides repactsbn at a variety of
sizes and resolutions (limited by compressed reptation) and progressive coding and transmissiormultiuser
environments.

Wavelet decomposition can be implemented in terfnfilters and realised as subband coding approatie.
fundamental issue in construction of efficient safb coding techniques is to select, design or mdtié analysis and
synthesis filters. Wavelets are good tool to create wide class of fikers which occur very effective in compression
schemes. The choice of suitable wavelet familyhwgtich criteria as regularity, linearity, symmetoythogonality or
impulse and step response of corresponding filskb can significantly improve compression efficggnFor compactly
supported wavelets corresponding filter lengthrigpprtional to the degree of smoothness and regylafrthe wavelet. But



when the wavelets are orthogonal (the greatest diedarrelation) they also have non-linear phasthéassociated FIR
filters. The symmetry, compact support and lineaagse of filters may be achieved by biorthogonal eletvbases
application. Then quadrature mirror and perfecbmstruction subband filters are used to computeadnelet transform.
Biorthogonal wavelet-based filters occurred veryiciemt in compression algorithms. A constructiori wavelet
transformation by fitting local defined basis trimmmation function (or finite length filters) inimmage data characteristics
is possible but very difficult. Because of nonstatiry of image data, miscellaneous image futuréshatould be important
for good reconstruction, significant various imageality (signal to noise level, spatial resolutiett.) from different
imaging systems it is very difficult to elaboraketconstruction method of the optimal-for-comprasdilters. Many issues
relating to the choice of the most efficient filtleank for image compression remain still unresafvathe demands of
preserving the diagnostic accuracy in reconstructedical images are exacting. Important high freqyecoefficients
which appear at the place of small structure edgy&ST and MR images should be saved. Accurate glotgan shapes
reconstruction in US images and strong noise realu@éd MN images is also required. It is ratheffidiflt to imagine that
one filter bank can do it in the best way. Rathaosing the best wavelet families for each modadigxpected.

Our aim is to increase the image compressioni&fiay, especially for medical applications, by apu suitable
wavelet transformation, adaptive quantization sahamd corresponding processed decomposition tteepgrcoding. We
want to achieve higher acceptable compressionsrdtiomedical images by better preserving the diatio accuracy of
images. Many bit allocation techniques applied immtization scheme are based on data distributgsunaptions,
guantiser distortion function etc. All statistiadsumptions built on global data characteristicmolocover exactly local
data behaviour and important detail of original gmae.g., different texture small area may be [6bus we decided to
build quantization scheme on the base of local dataacteristics such a direct data context indimmensions mentioned
earlier. We do data variance estimation on the bfseal data set as spatial estimate for corredipgncoefficient positions
in successive subbands. The details of quantizationess and correlated coding technique as aopaftective simple
wavelet-based compression method which allows lieese high reconstructed image quality at low ates are presented.

2. THE COMPRESSION TECHNIQUE

Scheme of our algorithm is very simple: dyadice@els decomposition of original image (25856 images were used) done

by selected filters. For symmetrical filters symmedoundary extension at the image borders was aisddor asymmetrical
filters - a periodic (or circular) boundary exteasi
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Figure 1. Dyadic wavelet image decomposition schemm== - horizontal relations; - - parerhildren relations.

LL - the lowest frequency subband.



Our approach to filters is utilitarian one, makingge of the literature to select the proper fillether than to design
them. We conducted an experiment using differenti&kiof wavelet transformation in presented algoritthong list of
wavelet families and corresponding filters weretags Daubechies, Adelson, Brislawn, Odegard, \glfes, Spline,
Antonini, Coiflet, Symmlet, Beylkin, Vaid ettGenerally Antonini* filters occurred to be the most efficient. Villase,
Odegard and Brislawn filters allow to achieve samitompression efficiency. Finally: Antonini 7/9télters are used for
MR and US image compression and Villasenor 18/p(iliers for CT image compression.

2.1 Adaptive space-frequency quantization

Presented space-frequency quantization techniqueaissed as entire data pre-selection, threshelection and scalar
uniform quantization with step size conditioned dhosen compression ratio. For adaptive estimatfothreshold and
guantization step values two extra data structueebaild. Entire data pre-selection allows to emtduzero-quantized data
set and predict the spatial context of each caeffic Next simple quantization of the lowest fremeyesubband (LL) allows
to estimate quantized coefficient variance predictas a space function across sequential subbaleds.the value of
guantization step is slightly modified by a modeild on variance estimate. Additionally, a set aéfficients is reduced by
threshold selection. The threshold value is in@éas the areas with the dominant zero-valued wiefits and the level of
growth depends on coefficient spatial position adicmy variance estimation function.

Firstly zero-quantized data prediction is performEde step sizew is assumed to be constant for all coefficients
at each decomposition level. For such quantizatiaael the threshold value is equavif2. Each coefficient whose value
is less than threshold is predicted to be zeroedhlafter quantization (insignificant). In oppositase coefficient is
predicted to be not equal to zero (significantiallows to create predictive zero-quantized coieffitsP map for threshold
evaluation in the next step. The procesB ofap creation is as follows:

if ¢, <w/2 then p=0

else p=1 ™)

where i =12,...mln; mn- horizontal and vertical image sizg, - wavelet coefficient value.

The coefficient variance estimation is made on lase of LL data for coefficients from next suldsnin
corresponding spatial positions. The quantizatidth vinentioned step sizewv is performed in LL and the most often
occurring coefficient value is estimated. This eals named MHC (mode of histogram coefficient). Ereas of MHC
appearance are strongly correlated with zero-vadladd areas in the successive subbands. The abddfatence of the LL
guantized data and MHC is used as variance estifoateext subband coefficients in correspondingtighb@ositions. We
tested many different schemes but this model allavachieve the best results in the final meanifigompression
efficiency. The variance estimation is rather ceabsit this simple adaptive model built on real ddtes not need
additional information for reconstruction processi ancreases the compression efficiency. leti=1,2,...Im, be a set of
LL quantized coefficient valuedm - size of this setFurthermore let mode of histogram coefficient Mi&lue be
estimated as follows:

f(MHC) = max  (c, ) and MHCO Al, (2

whereAl - alphabet of data source which describes the salfithe coefficient set and f (Ic) = T'q o N - number of
m

Ic; -valued coefficients. The normalised values ofiaraze estimatere,; for next subband coefficients in corresponding to

spatial positions (parent - children relations frthra top to the bottom of zerotree - see fig. £ samply expressed by the
following equation:

V€ =

®3)

Ic, - MHC‘
Vemax

These set ofve,data is treated as top parent estimation and isieappo all corresponding child nodes in wavelet
hierarchical decomposition tree.



9-th order context model is applied for coarsemadaduction in ‘unimportant' areas (usually witkvIdiagnostic

importance). The unimportance means that in thesas the majority of the data are equal to zedosigmificant values
are separated. If single significant values apjednese areas it most often suggests that theseflequency coefficients
are caused by noise. Thus the coarser data redumtibigher threshold allows to increase signaldise ratio by removing
the noise. At the edges of diagnostically impor&tnictures significant values are grouped togednerthe threshold value
is lower at this fields. P map is used for each coefficient context estimatidoncausal prediction of the coefficient
importance is made as linear function of the birsuyrounding data excluding considered coefficighificance. The
other polynomial, exponential or hyperbolic funatiaere tested but linear function occurred the neffstient. The data
context shown on fig. 2 is formed for each coefiiti This context is modified in the previous dpténts of processing
stream by the results of the selection with thealcthreshold values at these points insteadu@ (causal modification).
Values of the coefficient importancecimare evaluated for eaay coefficient from the following equation:

9
cim = coeff (9~ p,), where i =1,2,...,mIn. (4)
j=1
Next the threshold value is evaluated for eaghcoefficient:
th =w/ 21+ cim Ow{1- vg)), (5)
where i =1,2,...,m[n, si-correspondingto LL parent spatial locationawér decomposition levels.

The modified quantization step model uses the LéeHavariance estimate to slightly increase the sitepfor less
variance coefficients. Threshold data selection @mifbrm quantization is made as follows: each ficieht value is firstly
compared to its threshold value and then quantisgugw step for LL and modified step valuaw; for next subbands

Threshold selection and quantization for eagfcoefficient can be clearly described by the follogviequations:

if ¢, OLL then ¢=¢/ w
else

: ; (6)
if ¢ <th then €=0
else ¢=¢/ my
where
mwy; = Wi{l+ coeff ({1- vg)). @)

The coeff and coeff, values are fitted to actual data characteristiciging a priori image knowledge and performing
entire tests on groups of similar characteristiages.
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Figure 2. a) 9-order coefficient context for ewalng the coefficient importance value in procedafradaptive threshold
value estimationl - points of coefficient context causal modificatj b) example of binaf map context of single edge
coefficient.



2.2 Zerotrees construction and coding

Sophisticated entropy coding methods which canifsigmtly improve compression efficiency shouldaiet progressive
way of data reconstruction. Progressive reconstmds simple and natural after wavelet-based deomition. Thus the
wavelet coefficient values are coded subband-sei@ligrand spectral selection is made typicallyi@velet methods. The
same scale subbands are coded as follows: firstlyawest frequency subband, then right side coefft block, down-left
and down-right block at the end. After that nextgx scale data blocks are coded in the same oildereduce a
redundancy of such data representation zerotreetste is built. Zerotree describes well the catieh between data
values in horizontal and vertical directions, esufc between large areas with zero-valued dataes€hcorrelated
fragments of zerotree are removed and final datasts for entropy coding are significantly diminigiiso zerotree
structure allows to create different charactersstiata streams to increase the coding efficien&/ugéd simple arithmetic
coders for these data streams coding instead dfedpin many techniques bit map (from MSB to LSB)ing with
necessity of applying the efficient context modmhstruction. Because of refusing the successiveoappation we lost full
progression. But the simplicity of the algorithmdasometimes even higher coding efficiency was aehiieTwo slightly
different arithmetic coders for producing endingedstream were used.

2.2.1 Construction and pruning of zerotree

The dyadic hierarchical image data decompositiorprissented on fig. 1. Decomposition tree structiafects this
hierarchical data processing and strictly corredsaim created in transformation process data ssedime four lowest
frequency subbands which belong to the coarsek knael are located at the top of the tree. Thiega have not got parent
values but they are the parents for the coeffisiéntlower tree level of greater scale in corresfilog spatial positions.
These correspondence is shown on the fig. 1 ampehddren relations. Each parent coefficient lyaé four direct
children and each child is under one direct par@aditionally, horizontal relations at top tree éd\are introduced to
describe the data correlation in better way.

The decomposition tree becomes zerotree when nafiessof quantized coefficients are signed by sysbb
binary alphabet. Each tree node is checked todmfisiant (not equal to zero) or insignificant (edjto zero) - binary tree
is built. For LL nodes way of significance estineatiis slightly different. The MHC value is used eghbecause of the LL
areas of MHC appearance strong correlation witlo-zalued data areas in the next subbands. Nod@ned to be
significant if its value is not equal to MHC valoe insignificant if its value is equal to MHC. Thalue of MHC must be
sent to a decoder for correct tree reconstruction.

Next step of algorithm is a pruning of this treealyDthe branches to insignificant nodes can be @duand the
procedure is slightly other at different levelstiogé zerotree. Procedure of zerotree pruning stdrtee bottom of wavelet
zerotree. Sequential values of four children dat their parent from higher level are tested. & garent and the children
are insignificant - the tree branch with child nede removed and the parent is signed as prunattioraode (PBN).
Because of this the tree alphabet is widened &ethymbols. At the middle levels the pruning oftilee is performed if the
parent value is insignificant and all children aeeognised as PBN. From conducted research we fouhthat adding
extra symbols to the tree alphabet is not efficifantdecreasing the code bit rate. The zerotremipguat top level is
different. The checking node values is made in Zumtial tree directions by exploiting the spatiatretation of the
guantized coefficients in the subbands of the asirscale - see fig. 1. Sequentially the four famefits from the same
spatial positions and different subbands are coetpaith one another. The tree is pruned if the lodenis insignificant
and three corresponding coefficients are PBN. Thuse branches with nodes are removed and LL reodigined as PBN.
It means that all its children across zerotreeiasignificant. The spatial horizontal correlatioetleen the data at other
tree levels is not strong enough to increase thdangeefficiency by its utilisation.

2.2.2 Making three data streams and coding

Pruned zerotree structure is handy to create degtanss for ending efficient entropy coding. Insted@BN zero or MHC

values (nodes of LL) additional code value is itestrinto data set of coded values. Also bit mapsPBN spatial

distribution at different tree levels can be appli&/e used optionally only PBN bit map of LL datestightly increase the
coding efficiency. The zerotree coding is perfornmstjuentially from the top to the bottom to supporbgressive
reconstruction. Because of various quantized dataacteristics and wider alphabet of data sourcdetnafter zerotree
pruning three separated different data stream®ptionally fourth bit map stream are produced ficient data coding. It
is well known from information theory that if we alewith a data set with significant variability data statistics and



different statistics (alphabet and estimate of d@orthl probabilities) data may be grouped togetihés better to separate
these data and encode each group independenthcitease the coding efficiency. Especially is trueem context-based
arithmetic coder is used. The data separation identun the base of zerotree and than the followiat dre coded

independently:

- the LL data set which has usually smaller nurabénsignificant (MHC-valued) coefficients, less RBind less spatial
data correlation than next subband data (word-harwise arithmetic coder is less efficient therwtsié coder);
optionally this data stream is divided on PBN dlgttion bit map and word or char data set withdBiNB,

- the rest of top level (three next subbands) aittii® level subband data set with a considerabieban of zero-valued
(insignificant) coefficients and PBN code valuesydl of data correlation is greater, thus wordeloarwise arithmetic
coder is efficient enough,

- the lowest level data set with usually great nemdf insignificant coefficients and without PBNde value; data
correlation is very high.

Urban Koistinen arithmetic coder (DDJ Compressidontest public domain code accessible by internt)
simple bitwise algorithm is used for first dataestim coding. For the second and third data streatimgal-st order
arithmetic coder built on the base of code preskeimieNelson bookK is applied. Urban coder occurred up to 10% more
efficient than Nelson coder for first data streamding. Combining a rest of top level data and thelar statistics middle
level data allows to increase the coding efficieapproximately up to 3%.

The procedure of the zerotree construction, pruaimg) coding is presented on fig. 3.

Zerotree pruning:
Construction of - remove the branches Bataction based or]
binary zerotree > with insignificant nodes > statistical differences

- sign a parent node as PBN

LL data + bit map of PBN distributiooptionally)

rest of top and middle level dpta

bottom level da

v

Bitwise arithmetic coding Word- oraslvise arithmetic coding

~ I

Final compressed data representation

Figure 3. Quantized wavelet coefficients codingeseh with using zerotree structure. PBN - prunedditanode.

3. TESTS, RESULTS AND DISCUSSION

In our tests many different medical modality imagesre used. For chosen results presentation weiedpfthree
256X 256X 8-hit images from various medical imaging syste@ib:(computed tomography), MR (magnetic resonanecd) a
US(ultrasound) images. These images are showrgo#d.fiMean square error - MSE and peak signal igermatio - PSNR
were assumed to be reconstructed image qualityatiah criteria. Subjective quality appreciationswanducted in very
simple way - only by psychovisual impressifrthe non-professional observer.



Application of adaptive quantization scheme basedodified threshold value and quantization siee is more
efficient than simple uniform scalar quantizatignta 10% in a sense of better compression of glirithm. Generally
applying zerotree structure and its processing avgat coding efficiency up to 10% in comparison itect arithmetic
coding of quantized data set.

The comparison of the compression efficiency oé¢hmethods: DCT-based algoritirhSPIHT ® and presented
compression technique, called MBWT (modified bagiwelet-based technique) were performed for efficyesvaluation of
MBWT. The results of MSE and PSNR-based evaluatioa presented in table 1. Two wavelet-based corsipres
techniques are clearly more efficient than DCT-dasempression in terms of MSE/PSNR and also in sulbjective
evaluation for all cases. MBWT overcomes SPIHT roétfor US images and slightly for CT test imagédoater bit rate
range.

The concept of adaptive threshold and modified tjmation step size is effective for strong reductal noise but
it occurs sometimes too coarse at lower bit ratgeaand very small details of the image structaregut out of shape. US
images contain significant noise level and diagonaBy important small structures do not appeara@® resolution is
poor). Thus these images can be efficiently congaedy MBWT with image quality preserved. It isaalg shown on fig.
5. An improvement of compression efficiency in tieldo SPIHT is almost constant at wide range bféies (0.3 - 0.6 dB
of PSNR).

Figure 4. Examples of images used in the testempression efficiency evaluation. The results gméed in table 1 and on
fig. 5 were achieved for those images. The imagesaa follows: a ) echocardiography image, b) Cadhenage, c) MR
head image.



Table 1. Comparison of the three techniques comsjure®fficiency: DCT-based, SPIHT and MBWT. Therhites are
chosen in diagnostically interesting range (nearttbrders of acceptance).

Modality - bit rate DCT-based SPIHT MBWT
MSE PSNR[dB] MSE PSNR[dB] MSE PSNR[dh]
MRI - 0.70 bpp 8.93 38.62 4.65 41.45 4.75 41.36
MRI - 0.50 bpp 13.8 36.72 8.00 39.10 7.96 39.17
CT -0.50 bpp 6.41 40.06 3.17 43.12 3.18 43.11
CT -0.30 bpp 18.5 35.46 8.30 38.94 8.06 39.0Y
US - 0.40 bpp 54.5 30.08 31.3 33.18 28.3 33.6[L
US -0.25 bpp 91.5 28.61 51.5 31.01 46.8 31.48

The level of noise in CT and MR images is lower anthll structures are often important in image ysisl That
is the reason why the benefits of MBWT in this casesmaller. Generally compression efficiency &WIT is comparable
to SPIHT for these images. Presented method leseffectiveness for higher bit rates (see PSNR®¥ bpp MR
representation) but for lower bit rates both MR &Wdimages are compressed significantly better.bddkie reason is that

the coefficients are reduced relatively strongarabee of its importance reduction in MBWT threshsdtection at lower
bits rate range.
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Figure 5. Comparison of SPIHT and presented imghper technique (MBWT) compression efficiencyaatge of low bit
rates. US test image was compressed.

4. CONCLUSIONS

Adaptive space-frequency quantization scheme anatree-based entropy coding are not time-consunaing allow to
achieve significant compression efficiency. Gerlgralr algorithm is simpler than EZW-based algarith® and other
algorithms with extended subband classificatiorspace -frequency quantization mod®lbut compression efficiency of
presented method is competitive with the best phbli algorithms in the literature across diversssds of medical
images. The MBWT-based compression gives slighgtyeb results than SPIHT for high quality image$:&hd MR and
significantly better efficiency for US images. Reeted compression technique occurred very usefdl @omising for
medical applications. Appropriate reconstructed genajuality evaluation is desirable to delimit theceptable lossy
compression ratios for each medical modality. Weend to improve the efficiency of this method bigetdesign a
construction method of adaptive filter banks andalated more sufficient quantization schemeeé#nss to be possible by



applying proper a priori model of image featuresohdetermine diagnostic accuracy. Also more effiticontext-based
arithmetic coders should be applied and more stipaied zerotree structures should be tested.
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